前言: 原文链接:基于CNN的目标检测发展过程       文章有大量修改,如有不适,请移步原文. 参考文章:图像的全局特征--用于目标检测 目标的检测和定位中一个很困难的问题是,如何从数以万计的候选窗口中挑选包含目标物的物体.只有候选窗口足够多,才能保证模型的 Recall.传统机器学习方法应用,使用全局特征+级联分类器的思路仍然被持续使用.常用的级联方法有haar/LBP特征+Adaboost决策树分类器级联检测 和HOG特征 + SVM分类器级联检测. DPM方法为08年提出的一种可进行级…
有兴趣查看原文:YOLO详解 人眼能够快速的检测和识别视野内的物体,基于Maar的视觉理论,视觉先识别出局部显著性的区块比如边缘和角点,然后综合这些信息完成整体描述,人眼逆向工程最相像的是DPM模型. 目标的检测和定位中一个很困难的问题是,如何从数以万计的候选窗口中挑选包含目标物的物体.只有候选窗口足够多,才能保证模型的 Recall.传统机器学习方法应用,使用全局特征+级联分类器的思路仍然被持续使用.常用的级联方法有haar/LBP特征+Adaboost决策树分类器级联检测 和HOG特征 +…
原文链接:何恺明团队提出 Focal Loss,目标检测精度高达39.1AP,打破现有记录     呀 加入Facebook的何凯明继续优化检测CNN网络,arXiv 上发现了何恺明所在 FAIR 团队的最新力作:"Focal Loss for Dense Object Detection(用于密集对象检测的 Focal Loss 函数)". 孔涛博士在知乎上这么写道: 目标的检测和定位中一个很困难的问题是,如何从数以万计的候选窗口中挑选包含目标物的物体.只有候选窗口足够多,才能保证模…
检测结果如下 这个示例程序需要使用较大的内存,请保证内存足够.本程序运行速度比较慢,远不及OpenCV中的人脸检测. 注释中提到的几个文件下载地址如下 http://dlib.net/face_detection_ex.cpp.html http://dlib.net/dnn_introduction_ex.cpp.html http://dlib.net/dnn_introduction2_ex.cpp.html http://dlib.net/dnn_mmod_ex.cpp.html /*…
转自:https://zhuanlan.zhihu.com/p/23006190?refer=xiaoleimlnote 前面一直在写传统机器学习.从本篇开始写一写 深度学习的内容. 可能需要一定的神经网络基础(可以参考 Neural networks and deep learning 日后可能会在专栏发布自己的中文版笔记). RCNN (论文:Rich feature hierarchies for accurate object detection and semantic segment…
内核中用于数据接收的结构体struct msghdr(转) 我们从一个实际的数据包发送的例子入手,来看看其发送的具体流程,以及过程中涉及到的相关数据结构.在我们的虚拟机上发送icmp回显请求包,ping另一台主机172.16.48.1.我们使用系统调用sendto发送这个icmp包. ssize_t sendto(int s, const void *buf, size_t len, int flags, const struct sockaddr *to, socklen_t tolen);…
Abstract: 贡献主要有两点1:可以将卷积神经网络应用region proposal的策略,自底下上训练可以用来定位目标物和图像分割 2:当标注数据是比较稀疏的时候,在有监督的数据集上训练之后到特定任务的数据集上fine-tuning可以得到较好的新能,也就是说用Imagenet上训练好的模型,然后到你自己需要训练的数据上fine-tuning一下,检测效果很好.现在达到的效果比目前最好的DPM方法 mAP还要高上20点,目前voc上性能最好. 着篇文章主要是介绍RCNN,跟后面的,Fas…
基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法 Siamese CNN Temporally Constrained Metrics Tracklet Association MTT MOT 读 'B. Wang, L. Wang, et.al. Joint Learning of Siamese CNNs and Temporally Constrained Metrics for Tracklet Association[j],…
Atitit.各种  数据类型 ( 树形结构,表形数据  ) 的结构与存储数据库 attilax  总结 1. 数据结构( 树形结构,表形数据,对象结构 ) 1 2. 编程语言中对应的数据结构 java c# php ( Dic/Map      List    datatable ) 1 3. 数据库存储数据  1 4. 数据的表形显示( 多条记录 与单条记录 ) 2 5. ASP.NET 数据控件:GridView,DataList,Repeater ,DetailsView,FormVie…
本文转载自:http://blog.csdn.net/zqixiao_09/article/details/50839042 一.字符设备基础知识 1.设备驱动分类 linux系统将设备分为3类:字符设备.块设备.网络设备.使用驱动程序: 字符设备:是指只能一个字节一个字节读写的设备,不能随机读取设备内存中的某一数据,读取数据需要按照先后数据.字符设备是面向流的设备,常见的字符设备有鼠标.键盘.串口.控制台和LED设备等. 块设备:是指可以从设备的任意位置读取一定长度数据的设备.块设备包括硬盘.…