原题传送门:P2604 [ZJOI2010]基站选址 看一眼题目,变知道这题一定是dp 设f[i][j]表示在第i个村庄修建第j个基站且不考虑i+1~n个村庄的最小费用 可以得出f[i][j] = Min(f[k][j - 1] + cost[k][i] ) + c[i] (j - 1 <= k < i) 其中cost[k][i]表示i~k之间没有基站所需要的费用 计算复杂度O(N),加上循环,总复杂度O(N^2 K) 看一下数据范围K <= N,K <= 100 , N <…
LINK:基站选址 md气死我了l达成1结果一直调 显然一个点只建立一个基站 然后可以从左到右进行dp. \(f_{i,j}\)表示强制在i处建立第j个基站的最小值. 暴力枚举转移 复杂度\(n\cdot k^2\). 考虑如何求一个区间中的贡献 显然我们需要把每个点的左右给求出来 这个其实可以利用二叉堆来维护左端点/右端点. 发现多次调用 考虑优化 利用邻接表即可. 容易想到利用数据结构来优化. 可以发现 不断向右的过程中只要把每个点的贡献在线段树上表达出来即可. 这点很容易得到 不再赘述.…
题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci.如果在距离第i个村庄不超过Si的范围内建立了一个通讯基站,那么就村庄被基站覆盖了.如果第i个村庄没有被覆盖,则需要向他们补偿,费用为Wi.现在的问题是,选择基站的位置,使得总费用最小. 输入输出格式 输入格式: 输入文件的第一行包含两个整数N,K,含义如上所述. 第二行包含N-1个整数,分别表示D2,D3,…,DN ,这N-1个数是递增的…
luogu 先考虑朴素dp,设\(f_{i,j}\)表示在第\(i\)个村庄放了基站,一共放了\(j\)次,且只考虑前面村庄影响的答案.这里可以把\(j\)放在外面枚举,然后从\(f_{k,j-1}(k<i)\)转移到\(f_{i,j}\) 这里对于每个村庄,能影响它的基站是在一个区间里的,我们先二分找出能影响到它的最左边以及最右边基站位置.然后转移的时候还要考虑一些没被覆盖的村庄的代价,对于\(x\)村庄,如果\(k<L_x\)并且\(i>R_x\),那么要加上\(w_x\)的代价.考…
正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示选的第$j$个基站是$i$的最小费用,就有$f_{i,j}=min(f_{k,j}+cost(k,i))+c_i$,这个$cost$就$[k+1,i-1]$之间所有基站的补偿之和. 发现这个$cost$并不好求?于是逆向思考,每次在决策完选$x$转移完之后就会进入不选$x$的阶段嘛(因为是,$j$在…
题解 [ZJOI2010]基站选址 题面 解析 首先考虑一个暴力的DP, 设\(f[i][k]\)表示第\(k\)个基站设在第\(i\)个村庄,且不考虑后面的村庄的最小费用. 那么有\(f[i][k]=\min(f[j][k-1]+cost(j,i))\),\(j\in[1,i-1]\) 其中\(cost(j,i)\)表示从\(j\)到\(i\)中间没有被覆盖的村庄的补偿. 但这显然会T... 首先可以考虑优化掉\(k\), 直接因为只有\(k-1\)有影响,直接提出来放外面循环就行了. 然后要…
[LG2605][ZJOI2010]基站选址 题面 洛谷 题解 先考虑一下暴力怎么写,设\(f_{i,j}\)表示当前\(dp\)到\(i\),且强制选\(i\),目前共放置\(j\)个的方案数. 那么转移为\(f_{i,j}=\min_{k=1}^{i-1} \{f_{k,j-1}+cost_{k,i}\}+c_i\),其中\(cost_{l,r}\)表示\([l,r]\)只选两端中间的补偿. 其中\(cost\)只需要\(O(\frac {n^3}4)\)预处理就好了,那么复杂度为\(O(\…
G. base 基站选址 内存限制:128 MiB 时间限制:2000 ms 标准输入输出 题目类型:传统 评测方式:文本比较   题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci.如果在距离第i个村庄不超过Si的范围内建立了一个通讯基站,那么就成它被覆盖了.如果第i个村庄没有被覆盖,则需要向他们补偿,费用为Wi.现在的问题是,选择基站的位置,使得总费用最小. 输入格式 输入数据 (ba…
线段树优化dp 数组f[i][j]表示在前i个村庄内,第j个基站建在i处的最小费用 根据交线牛逼法和王鹤松式可得方程 f[i][j]=min(f[k][j−1]+cost(k,i)) cost(k,i)表示第i~k个村庄之间没有被基站覆盖的村庄所需的赔偿费用,计算费用的复杂度为O(n) 利用二分查找预处理每个位置的需求范围bef[i],beh[i] 之后就是利用线段树维护f[]+cost()的最小值,区间查询区间更新 当beh[x]=i,若i不建造,则加cost(可能存在很多x,前向星或vect…
Description 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci.如果在距离第i个村庄不超过Si的范围内建立了一个通讯基站,那么就成它被覆盖了.如果第i个村庄没有被覆盖,则需要向他们补偿,费用为Wi.现在的问题是,选择基站的位置,使得总费用最小. 输入数据 (base.in) 输入文件的第一行包含两个整数N,K,含义如上所述. 第二行包含N-1个整数,分别表示D2,D3,-,DN ,这N-…