前言:                                                                                                                                   由于业务需求,最近部门开始全员学习机器学习,为了进一步更加透彻得了解机器学习和深度学习,开始学习tensorflow.众所周知,tensorflow是Google分布式机器学习框架,不仅本身集成好了很多机器学习算法的接口,也为机器学…
. 首先 Numpy: Numpy是Python的科学计算库,提供矩阵运算. 想想list已经提供了矩阵的形式,为啥要用Numpy,因为numpy提供了更多的函数. 使用numpy,首先要导入numpy: import numpy as np 使用numpy创建数组以list 或tuple作为参数: np.array([,,,]) np.array((,,)) 使用numpy可以指定数据类型: numpy.int32, numpy.int16, numpy.float64 np.array((,…
tensorflow 学习手册 tensorflow 学习手册1:https://cloud.tencent.com/developer/section/1475687 tensorflow 学习手册2:https://data-flair.training/blogs/tensorflow-wide-and-deep-learning/ 详细的 op 数据操作 https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/con…
本部分主要涉及到TensorFlow的运作方式和主要操作 所需的代码在https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/mnist 需要用到的代码文件有: mnist.py   构建一个完全连接(full connected)的MNIST模型所需要的代码 fully_connected_feed.py 利用下载的数据集训练构建好的MNIST模型的主要代码,以数据反馈字典的形式为输出…
TensorFlow运作方式入门 代码:tensorflow/g3doc/tutorials/mnist/ 本篇教程的目的,是向大家展示如何利用TensorFlow使用(经典)MNIST数据集训练并评估一个用于识别手写数字的简易前馈神经网络(feed-forward neural network).我们的目标读者,是有兴趣使用TensorFlow的资深机器学习人士. 因此,撰写该系列教程并不是为了教大家机器学习领域的基础知识. 在学习本教程之前,请确保您已按照安装TensorFlow教程中的要求…
笔记整理者:王小草 笔记整理时间2017年2月24日 原文地址 http://blog.csdn.net/sinat_33761963/article/details/56837466?fps=1&locationNum=5 Tensorflow官方英文文档地址:https://www.tensorflow.org/get_started/mnist/beginners 本文整理时官方文档最近更新时间:2017年2月15日 1.案例背景 本文是跟着Tensorflow官方文档的第二篇教程–识别手…
TensorFlow运作方式 要用到的代码都在Github上.当然,如果你本地装了TensorFlow,也可以用Everything直接搜索以下文件: mnist.py fully_connected_feed.py 要开始训练,只需要: python fully_connected_feed.py 准备数据,下载数据: 设置输入与占位符大小: assets_placeholder = tf.placeholder(tf.float32, shape=(batch_size, IMAGE_PIX…
简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节点之间则是由张量(Tensor)作为边来连接在一起的.所以Tensorflow的计算过程就是一个Tensor流图.Tensorflow的图则是必须在一个Session中来计算.这篇笔记来大致介绍一下Session.Graph.Operation和Tensor. Session Session提供了O…
深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可以构建神经网络层函数,比如我们称之为add_layer()函数,由于神经网络层的工作原理是一层的神经元处理完成后得到一个结果,然后传递给下一个神经元,这就类似于函数的return与参数变量,所以最终代码的模型应该如下图所示: 通过add_layer的层层嵌套,实现上一个add_layer的结果返回给…
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S1就是S2的一个超集,反过来,S2是S1的子集. 张量形状: 固定长度: [],() 0阶次:[3],(2,3) 1/2阶次 不定长度:[None] 表示任意长度的向量,(None,3) 表示行数任意,3列的矩阵 获取Op:tf.shape(tensor, name="tensor_shape&qu…