1. Abstract 本文旨在简单介绍下各种轻量级网络,纳尼?!好吧,不限于轻量级 2. Introduction 2.1 Inception 在最初的版本 Inception/GoogleNet,其核心思想是利用多尺寸卷积核去观察输入数据.举个栗子,我们看某个景象由于远近不同,同一个物体的大小也会有所不同,那么不同尺度的卷积核观察的特征就会有这样的效果.于是就有了如下的网络结构图: 图1: Inception module, naive version 于是我们的网络就变胖了,通过增加网络的…
1. 网络IPC 套接字接口既可以用于计算机之间进程通信,也可以用于计算机内部进程通信   套接字描述符在Unix系统中是用文件描述符实现的   /* 创建一个套接字 */ #include <sys/socket.h> int socket(int domain, int type, int protocol); protocol通常是0,表示按给定的域或套接字类型选择默认协议 在AF_INET中,SOCK_STREAM的默认协议是 TCP 在AF_INET中,SOCK_DGRAM的默认协议…
UFLDL深度学习笔记 (四)用于分类的深度网络 1. 主要思路 本文要讨论的"UFLDL 建立分类用深度网络"基本原理基于前2节的softmax回归和 无监督特征学习,区别在于使用更"深"的神经网络,也即网络中包含更多的隐藏层,我们知道前一篇"无监督特征学习"只有一层隐藏层.原文深度网络概览不仅给出了深度网络优势的一种解释,还总结了几点训练深度网络的困难之处,并解释了逐层贪婪训练方法的过程.关于深度网络优势的表述非常好,贴在这里. ​ 使用深度…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/269 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 前言 卷积神经网络的结构优化和深度加深,带来非常显著的图像识别效果提升,但同时也带来了高计算复杂度和更长的计算时间,实际工程应用中对效率的考虑也很多,研究界与工业界近年都在努力「保持效果的情况下压缩…
UFLDL深度学习笔记 (一)基本知识与稀疏自编码 前言 近来正在系统研究一下深度学习,作为新入门者,为了更好地理解.交流,准备把学习过程总结记录下来.最开始的规划是先学习理论推导:然后学习一两种开源框架:第三是进阶调优.加速技巧.越往后越要带着工作中的实际问题去做,而不能是空中楼阁式沉迷在理论资料的旧数据中.深度学习领域大牛吴恩达(Andrew Ng)老师的UFLDL教程 (Unsupervised Feature Learning and Deep Learning)提供了很好的基础理论推导…
UFLDL深度学习笔记 (六)卷积神经网络 1. 主要思路 "UFLDL 卷积神经网络"主要讲解了对大尺寸图像应用前面所讨论神经网络学习的方法,其中的变化有两条,第一,对大尺寸图像的每个小的patch矩阵应用相同的权值来计算隐藏层特征,称为卷积特征提取:第二,对计算出来的特征矩阵做"减法",把特征矩阵纵横等分为多个区域,取每个区域的平均值(或最大值)作为输出特征,称为池化.这样做的原因主要是为了降低数据规模,对于8X8的图像输入层有64个单元,而100X100的图像…
UFLDL深度学习笔记 (五)自编码线性解码器 1. 基本问题 在第一篇 UFLDL深度学习笔记 (一)基本知识与稀疏自编码中讨论了激活函数为\(sigmoid\)函数的系数自编码网络,本文要讨论"UFLDL 线性解码器",区别在于输出层去掉了\(sigmoid\),将计算值\(z\)直接作为输出.线性输出的原因是为了避免对输入范围的缩放: S 型激励函数输出范围是 [0,1],当$ f(z^{(3)}) $采用该激励函数时,就要对输入限制或缩放,使其位于 [0,1] 范围中.一些数据…
UFLDL深度学习笔记 (三)无监督特征学习 1. 主题思路 "UFLDL 无监督特征学习"本节全称为自我学习与无监督特征学习,和前一节softmax回归很类似,所以本篇笔记会比较简化,主题思路和步骤如下: 把有标签数据分为两份,先对一份原始数据做无监督的稀疏自编码训练,获得输入层到隐藏层的最优化权值参数\(W, b\): 把另一份数据分成分成训练集与测试集,都送入该参数对应的第一层网络(去掉输出层的稀疏自编码网络): 用训练集输出的特征作为输入,训练softmax分类器: 再用此参数…
python3.4学习笔记(十七) 网络爬虫使用Beautifulsoup4抓取内容 Beautiful Soup 是用Python写的一个HTML/XML的解析器,它可以很好的处理不规范标记并生成剖析树(parse tree). 它提供简单又常用的导航(navigating),搜索以及修改剖析树的操作.它可以大大节省你的编程时间. Beautiful Soup Documentation — Beautiful Soup 4.4.0 documentationhttp://www.crummy…
python3.4学习笔记(十三) 网络爬虫实例代码,使用pyspider抓取多牛投资吧里面的文章信息PySpider:一个国人编写的强大的网络爬虫系统并带有强大的WebUI,采用Python语言编写,分布式架构,支持多种数据库后端,强大的WebUI支持脚本编辑器,任务监视器,项目管理器以及结果查看器. 用pyspider的demo页面创建了一个爬虫,写一个正则表达式抓取多牛网站上特定的URL,很容易就得到想要的结果了,可以非常方便分析抓取页面里面的内容binux/pyspider · GitH…