Luogu P4168 [Violet]蒲公英 分块】的更多相关文章

这道题算是好好写了.写了三种方法. 有一个好像是$qwq$$N\sqrt(N)$的方法,,但是恳请大佬们帮我看看为什么这么慢$qwq$(后面的第三种) 注:$pos[i]$表示$i$属于第$pos[i]$块. 第一种是统计所有可能的块组成的区间中(第i块到第j块),每个数出现的次数,记做$f[i][j][k]$,和所有可能的块组成的区间的答案,记做$h[i][j]$. 然后每次先把整块的答案作为初始答案,然后对于散块中的每个值$vl$,暴力修改对应的$f[i][j][vl]$,更新答案. 当块长…
嘟嘟嘟 分块经典题竟然是一道黑题…… 分块求区间众数的大体思想是对于询问区间[L, R],预处理出这中间的整块的众数,然后统计两边零散的数在[L, R]中出现的次数,最后取出现次数最多且最小的数. 因此需要一个sum[i][j]表示前 i 块中数字 j 出现的次数,ans[i][j]表示块 i 到 j 的众数.预处理sum用前缀和的思想,O(n√n)可完成.预处理ans就是枚举左端点是第几个块,然后每一次从这个块的左端点O(n)扫一遍,复杂度也是O(n√n). 查询的时候,整块的众数即其个数分别…
P4168 [Violet]蒲公英 题目背景 亲爱的哥哥: 你在那个城市里面过得好吗? 我在家里面最近很开心呢.昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多小朋友也被它杀掉了.我觉得把那么可怕的怪物召唤出来的那个坏蛋也很坏呢.不过奶奶说他是很难受的时候才做出这样的事的-- 最近村子里长出了一大片一大片的蒲公英.一刮风,这些蒲公英就能飘到好远的地方了呢.我觉得要是它们能飘到那个城市里面,让哥哥看看就好了呢! 哥哥你要快点回来哦! 爱你的妹妹 Violet…
区间众数的重题 和数列分块入门9双倍经验还是挺好的 然后开O2水过 好像有不带log的写法啊 之后在补就是咕咕咕 // luogu-judger-enable-o2 #include <cstdio> #include <algorithm> #include <cstring> #include <vector> #include <map> #include <cmath> using namespace std; int m,b…
发现写算法专题老是写不动,,,, 所以就先把我在luogu上的题解搬过来吧! 题目大意:查询区间众数,无修改,强制在线 乍一看是一道恐怖的题,仔细一看发现并没有那么难: 大致思路是这样的,首先我们要充分发挥分块暴力大法好的精神 先暴力预处理出每个块内每种蒲公英的个数, 然后求出对每个块而言的前缀和, 于是这样我们就可以区间查询任意两个块之间每种蒲公英的数量了 然后我们预处理出任意两个块之间的众数 最后对于每组询问,我们先找到夹在它们中间的块, 如果这个两个块r-l<=1,那么我们暴力求众数 为什…
$ \color{#0066ff}{ 题目描述 }$ 在乡下的小路旁种着许多蒲公英,而我们的问题正是与这些蒲公英有关. 为了简化起见,我们把所有的蒲公英看成一个长度为n的序列 \((a_1,a_2..a_n)\),其中 \(a_i\) 为一个正整数,表示第i棵蒲公英的种类编号. 而每次询问一个区间 [l,r],你需要回答区间里出现次数最多的是哪种蒲公英,如果有若干种蒲公英出现次数相同,则输出种类编号最小的那个. 注意,你的算法必须是在线的 \(\color{#0066ff}{输入格式}\) 第一…
神仙分块题?其实还是很简单的,res[i][j]表示第i块到第j块的众数,然后再用sum[i][j]表示前i块中j这个种类出现的次数,然后分块瞎搞就行了,感觉我写的十分简洁,好评( //author Eterna #define Hello the_cruel_world! #pragma GCC optimize(2) #include<iostream> #include<algorithm> #include<cstdio> #include<string&…
题目描述 经典区间众数题目 然而是权限题,所以题目链接放Luogu的 题解 因为太菜所以只会$O(n*\sqrt{n}+n*\sqrt{n}*log(n))$的做法 就是那种要用二分的,并不会clj那种不带log的做法 首先数的值域为1e9肯定要离散化一下 因为数最多有40000个所以开40000个vector,存一下每个数出现的位置 预处理出每个以块的端点为左右端点的区间的众数,这种区间一共有O(block^2)个,所以可以用O(n*block)的时间复杂度来预处理 可以发现的一点是,每个区间…
题目大意:有$n(n\leqslant4\times10^4)$个数,$m(m\leqslant5\times10^4)$个询问,每次问区间$[l,r]$内的众数,若相同输出最小的,强制在线. 题解:先离散化,分块,设块大小为$S$,可以在$O(\dfrac n S n)$的复杂度内预处理出每两个块间的众数.考虑询问,发现询问中的众数要么是整块的那一个众数,要么就是非整块内出现过的数,可以用主席树查询区间数出现个数,比较一下即可,一次查询复杂度$O(2S\log_2 n)$.$S$开的比$\sq…
历尽千辛万苦终于AC了这道题目... 我们考虑1个区间\([l,r]\), 被其完整包含的块的区间为\([L,R]\) 那么众数的来源? 1.\([l,L)\)或\((R,r]\)中出现的数字 2.\([L,R]\)中的众数 思路逐渐清晰起来 我们考虑维护这样的两个量 \(P[i][j]\)表示从第i块到第j块的区间(最小)众数 \(S[i][j]\)表示前i块中j的出现次数 先直接离散化或者hash或者unordered_map处理,然后维护 结合刚才的思路,不难得到: 1.求出\([l,L)…