随着业务发展,系统拆分导致系统调用链路愈发复杂一个前端请求可能最终需要调用很多次后端服务才能完成,当整个请求变慢或不可用时,我们是无法得知该请求是由某个或某些后端服务引起的,这时就需要解决如何快读定位服务故障点,以对症下药.于是就有了分布式系统调用跟踪的诞生. 现今业界分布式服务跟踪的理论基础主要来自于 Google 的一篇论文<Dapper, a Large-Scale Distributed Systems Tracing Infrastructure>,使用最为广泛的开源实现是 Twit…
Spring Cloud(十二):分布式链路跟踪 Sleuth 与 Zipkin[Finchley 版] 发表于 2018-04-24 | 随着业务发展,系统拆分导致系统调用链路愈发复杂一个前端请求可能最终需要调用很多次后端服务才能完成,当整个请求变慢或不可用时,我们是无法得知该请求是由某个或某些后端服务引起的,这时就需要解决如何快读定位服务故障点,以对症下药.于是就有了分布式系统调用跟踪的诞生. 现今业界分布式服务跟踪的理论基础主要来自于 Google 的一篇论文<Dapper, a La…
原文:http://www.cnblogs.com/ityouknow/p/8403388.html 随着业务发展,系统拆分导致系统调用链路愈发复杂一个前端请求可能最终需要调用很多次后端服务才能完成,当整个请求变慢或不可用时,我们是无法得知该请求是由某个或某些后端服务引起的,这时就需要解决如何快读定位服务故障点,以对症下药.于是就有了分布式系统调用跟踪的诞生. 现今业界分布式服务跟踪的理论基础主要来自于 Google 的一篇论文<Dapper, a Large-Scale Distributed…
随着业务发展,系统拆分导致系统调用链路愈发复杂一个前端请求可能最终需要调用很多次后端服务才能完成,当整个请求变慢或不可用时,我们是无法得知该请求是由某个或某些后端服务引起的,这时就需要解决如何快读定位服务故障点,以对症下药.于是就有了分布式系统调用跟踪的诞生. 现今业界分布式服务跟踪的理论基础主要来自于 Google 的一篇论文<Dapper, a Large-Scale Distributed Systems Tracing Infrastructure>,使用最为广泛的开源实现是 Twit…
现今业界分布式服务跟踪的理论基础主要来自于 Google 的一篇论文<Dapper, a Large-Scale Distributed Systems Tracing Infrastructure>,使用最为广泛的开源实现是 Twitter 的 Zipkin,为了实现平台无关.厂商无关的分布式服务跟踪,CNCF 发布了布式服务跟踪标准 Open Tracing.国内,淘宝的 “鹰眼”.京东的 “Hydra”.大众点评的 “CAT”.新浪的 “Watchman”.唯品会的 “Microscop…
当我们进行微服务架构开发时,通常会根据业务来划分微服务,各业务之间通过REST进行调用.一个用户操作,可能需要很多微服务的协同才能完成,如果在业务调用链路上任何一个微服务出现问题或者网络超时,都会导致功能失败.随着业务越来越多,对于微服务之间的调用链的分析会越来越复杂. Spring Cloud Sleuth为服务之间调用提供链路追踪.通过Sleuth可以很清楚的了解到一个服务请求经过了哪些服务,每个服务处理花费了多长.从而让我们可以很方便的理清各微服务间的调用关系.此外Sleuth可以帮助我们…