这是在kaggle上的一个练习比赛,使用的是ImageNet数据集的子集. 注意,mxnet版本要高于0.12.1b2017112. 下载数据集. train.zip test.zip labels 然后解压在data文件夹下 1. 数据 1.1 整理数据 将解压后的数据整理成Gluon能够读取的形式,这里我直接使用了zh.gluon.ai教程上的代码 导入各种库 import math import os import shutil from collections import Counte…
本demo从pytorch官方的迁移学习示例修改而来,增加了以下功能: 根据AUC来迭代最优参数: 五折交叉验证: 输出验证集错误分类图片: 输出分类报告并保存AUC结果图片. import os import numpy as np import torch import torch.nn as nn from torch.optim import lr_scheduler import torchvision from torchvision import datasets, models,…
概述 迁移学习可以改变你建立机器学习和深度学习模型的方式 了解如何使用PyTorch进行迁移学习,以及如何将其与使用预训练的模型联系起来 我们将使用真实世界的数据集,并比较使用卷积神经网络(CNNs)构建的模型和使用迁移学习构建的模型的性能 介绍 我去年在一个计算机视觉项目中工作,我们必须建立一个健壮的人脸检测模型. 考虑到我们拥有的数据集的大小,从头构建一个模型是一个挑战.从头构建将是一个耗时又消耗计算资源的方案.由于时间紧迫,我们必须尽快找出解决办法. 这就是迁移学习拯救我们的时候.这是一个…
迁移学习基本概念 迁移学习是这两年比较火的一个话题,主要原因是在当前的机器学习中,样本数据的获取是成本最高的一块.而迁移学习可以有效的把原有的学习经验(对于模型就是模型本身及其训练好的权重值)带入到新的领域,从而不需要过多的样本数据,也能达到大批量数据所达成的效果,进一步节省了学习的计算量和时间. MobileNet V2是由谷歌在2018年初发布的一个视觉模型,在Keras中已经内置的并使用ImageNet完成了训练,可以直接拿来就用,这个我们在本系列第五篇中已经提过了.MobileNet V…
基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 TensorFlow 和 Keras 等框架的出现大大降低了编程的复杂度,而迁移学习的思想也允许我们利用现有的模型加上少量数据和训练时间,取得不俗的效果. 这篇文章将示范如何利用迁移学习训练一个能从图片中分类不同种类的花的模型,它在五种花中能达到 80% 以上的准确度(比瞎蒙高了 60% 哦),而且只需要普…
原文地址: https://blog.csdn.net/qq_33414271/article/details/78756366 土豆洋芋山药蛋 -------------------------------------------------------------------------------------------------------- 目录:一.什么是迁移学习?二.为什么要迁移学习?三.具体怎么做?3.1目标数据和原始数据都有标签 3.1.1模型Fine-tune 3.1.2模…
上一篇博客[用tensorflow迁移学习猫狗分类]笔者讲到用tensorlayer的[VGG16模型]迁移学习图像分类,那麽问题来了,tensorlayer没提供的模型怎么办呢?别担心,tensorlayer提供了tensorflow中的[slim模型]导入功能,代码例子在tutorial_inceptionV3_tfslim. 那么什么是slim?slim到底有什么用?slim是一个使构建,训练,评估神经网络变得简单的库.它可以消除原生tensorflow里面很多重复的模板性的代码,让代码更…
原文地址: https://www.jiqizhixin.com/articles/2017-06-02-2 =================================================================== PS: 视频在原文中. 第四范式首席科学家杨强:AlphaGo的弱点及迁移学习的应对(附视频) 5 月 27-28 日,机器之心在北京顺利主办了第一届全球机器智能峰会(GMIS 2017),来自美国.加拿大.欧洲,香港及国内的众多顶级专家分享了精彩的主题…
迁移学习研究综述 Sinno Jialin Pan and Qiang Yang,Fellow, IEEE 摘要:   在许多机器学习和数据挖掘算法中,一个重要的假设就是目前的训练数据和将来的训练数据,一定要在相同的特征空间并且具有相同的分布.然而,在许多现实的应用案例中,这个假设可能不会成立.比如,我们有时候在某个感兴趣的领域有个分类任务,但是我们只有另一个感兴趣领域的足够训练数据,并且后者的数据可能处于与之前领域不同的特征空间或者遵循不同的数据分布.这类情况下,如果知识的迁移做的成功,我们将…
一.介绍 内容 使机器能够"举一反三"的能力 知识点 使用 PyTorch 的数据集套件从本地加载数据的方法 迁移训练好的大型神经网络模型到自己模型中的方法 迁移学习与普通深度学习方法的效果区别 两种迁移学习方法的区别 二.从图片文件中加载训练数据 引入相关包 下载网盘链接:https://pan.baidu.com/s/1OgknV6OUB-27DED6KSZ0iA 提取码:ekc9 import torch import torch.nn as nn import torch.op…