机器学习算法及代码实现–K邻近算法 1.K邻近算法 将标注好类别的训练样本映射到X(选取的特征数)维的坐标系之中,同样将测试样本映射到X维的坐标系之中,选取距离该测试样本欧氏距离(两点间距离公式)最近的k个训练样本,其中哪个训练样本类别占比最大,我们就认为它是该测试样本所属的类别. 2.算法步骤: 1)为了判断未知实例的类别,以所有已知类别的实例作为参照 2)选择参数K 3)计算未知实例与所有已知实例的距离 4)选择最近K个已知实例 5)根据少数服从多数的投票法则(majority-voting…
 一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征(向量的每个元素)与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似的的分类标签.由于样本集可以很大,我们选取前k个最相似数据,然后统计k个数据中出现频率最高的标签为新数据的标签. K邻近算法的一般流程: (1)收集数据:可以是本地数据,也可以从网页抓取. (2)准备数…
k邻近算法的伪代码: 对未知类别属性的数据集中的每个点一次执行以下操作: (1)计算已知类别数据集中的点与当前点之间的距离: (2)按照距离递增次序排列 (3)选取与当前点距离最小的k个点 (4)确定前k个点所在类别的出现频率 (5)返回前k个点出现频率最好的类别作为当前点的预测分类 python函数实现 ''' Created on Sep 16, 2010 kNN: k Nearest Neighbors Input: inX: vector to compare to existing d…
1. k邻近算法原理: 存在一个样本数据集,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似的数据(最邻近)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k邻近算法中k的出处,通常k是不大于20的整数.最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类. 2. 分析的一般流程: 1)收集数据:可以使用任何方…
Python实现kNN(k邻近算法) 运行环境 Pyhton3 numpy科学计算模块 计算过程 st=>start: 开始 op1=>operation: 读入数据 op2=>operation: 格式化数据 op3=>operation: 计算测试文本到全部训练文本的距离 op4=>operation: 找出最优的k个距离 op5=>operation: 归一化k个距离 e=>end st->op1->op2->op3->op4->…
1. KNN 算法 K-近邻(k-Nearest Neighbor,KNN)是分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. K邻近算法原理很简单,但是真正用好它也不容易,比如K的取值到底为多少才合适,而且知道什么场景下用它更不简单. 缺点:  该算法的执行效率并不高,每次计算都需要将 待识别的用例 与所有测试用例进行求差计算,计算量较大.随着测…
一 k近邻算法原理 k近邻算法是一种基本分类和回归方法. 原理:K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中. 如上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据.这也就是我们的目的,来了一个新的数据点,我要得到它的类别是什么?好的,下面我们根据k近邻的思想来给绿色圆点进行分类. 如果K=3,绿色圆点的最邻近的3…
一.前言 kaggle上有传统的手写数字识别mnist的赛题,通过分类算法,将图片数据进行识别.mnist数据集里面,包含了42000张手写数字0到9的图片,每张图片为28*28=784的像素,所以整个数据集的大小为(42000,784),加上标签值的一列. 二.模型选择 通过简单的数据观察,发现这些数据都是初始的像素数据,还没经过标准化.所以对其做标准化处理后,我们就可以进入到模型选择的步骤了. 整个数据集dataset的数据量不算小,shape为(42000,784),为了节省时间,我们可以…
数据挖掘算法学习笔记汇总 数据挖掘算法(一)–K近邻算法 (KNN) 数据挖掘算法(二)–决策树 数据挖掘算法(三)–logistic回归 算法简介 KNN算法的训练样本是多维特征空间向量,其中每个训练样本带有一个类别标签.算法的训练阶段只包含存储的特征向量和训练样本的标签. 在分类阶段,k是一个用户定义的常数.一个没有类别标签的向量(查询或测试点)将被归类为最接近该点的k个样本点中最频繁使用的一类. 一般情况下,将欧氏距离作为距离度量 d=(x1−x2)2+(y1−y2)2−−−−−−−−−−…
给定训练数据样本和标签,对于某测试的一个样本数据,选择距离其最近的k个训练样本,这k个训练样本中所属类别最多的类即为该测试样本的预测标签.简称kNN.通常k是不大于20的整数,这里的距离一般是欧式距离. 2:python代码 2.1 kNN概述 2.1.1:准备:使用python导入数据 2.2.1:实施kNN算法 代码讲解: (a)tile函数 tile(inX, i),扩展长度:tile(inX, (i,j)) ;i是扩展个数,j是扩展长度. (b) python代码路径,需要导入os文件,…