mysql 大表mysqldump迁移方案】的更多相关文章

场景 一张历史表product_history 500万数据,凌晨的才会将正式表的数据迁移到历史表,此次需求将历史表迁移到一个更便宜的数据库实例进行存储. 条件 1.此表不是实时写,凌晨才会更新 2.夸数据库实例进行迁移 3.此表对数据准确性有要求,数据必须准确 选型 1.navicat 导出数据(转存储仅结构和数据) 2.重命名表,创建一张新表(适合同一个实例) 3.mysqldump 导数据 操作对比 navicat 支持两个数据库之间直接导数据,不需要先导出到本地再从本地导入到另外的实例…
本文原作者“ manong”,原创发表于segmentfault,原文链接:segmentfault.com/a/1190000006158186 1.引言   MySQL作为开源技术的代表作之一,是互联网得以广泛流行的重要基础技术之一. 国外 GitHub.Airbnb.Yelp.Coursera 均在使用 MySQL 数据库,国内阿里巴巴.去哪儿网.腾讯.魅族.京东等等的部分关键业务同样使用了 MySQL 数据库.同时,MySQL 也是众多数据库排行榜单的第一名,丛多国内一线互联网企业都在用…
当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑.部署.运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的.而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量: 字段 1.尽量使用TINYINT.SMALLINT.MEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED 2.VARC…
摘要:MySQL JDBC抽取到底应该采用什么样的方式,且听小编给你娓娓道来. 小编最近在云上的一个迁移项目中被MySQL抽取模式折磨的很惨.一开始爆内存被客户怼,再后来迁移效率低下再被怼.MySQL JDBC抽取到底应该采用什么样的方式,且听小编给你娓娓道来. Java-JDBC通信原理 JDBC与数据库之间的通信是通过socket完,大致流程如下图所示.Mysql Server ->内核Socket Buffer -> 客户端Socket Buffer ->JDBC所在的JVM JD…
一则清理MySQL大表以释放磁盘空间的案例 一.基本情况: 1.dbtest库554G,先清理st_online_time_away_ds(37G)表的数据,保留半年的数据: 1)删除的数据:select count(1),tdate from dbtest.st_online_time_away_ds where tdate < '2017-08-01';(记录数为:462171894) 2)保留的数据:select count(1),tdate from dbtest.st_online_t…
对于大表的迁移,如果使用mysqldump进行导出,然后重新导入到其它环境,速度是非常缓慢的.如果使用传输表空间,则可以解决这个问题. 测试使用传输表空间迁移表,基础环境如下:   源库 目标库 IP地址 192.168.10.11 192.168.10.12 数据库版本 5.7.24 5.7.24 数据库名称 db1 db2 待迁移的表 test01   (1)在目标库创建和源库相同的表test01 先在主库db1上查看表信息,并生成创建表的语句 mysql> select count(*)…
mysql优化是一个相对来说比较重要的事情了,特别像对mysql读写比较多的网站就显得非常重要了,下面我们来介绍mysql大内存高性能优化方案 8G内存下MySQL的优化 按照下面的设置试试看:key_buffer = 3840Mmax_allowed_packet = 16Mtable_cache = 1024sort_buffer_size = 32Mread_buffer_size = 32Mread_rnd_buffer_size = 32Mmyisam_sort_buffer_size…
当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑.部署.运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的.而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量: 字段 尽量使用TINYINT.SMALLINT.MEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED VARCHAR的…
当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑.部署.运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的.而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量: 字段 尽量使用TINYINT.SMALLINT.MEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED VARCHAR的…
转:https://segmentfault.com/a/1190000006158186?hmsr=toutiao.io&utm_medium=toutiao.io&utm_source=toutiao.io 当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑.部署.运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的.而事实上很多时…