首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
ubuntu16.04 使用tensorflow object detection训练自己的模型
】的更多相关文章
ubuntu16.04 使用tensorflow object detection训练自己的模型
一.构建自己的数据集 1.格式必须为jpg.jpeg或png. 2.在models/research/object_detection文件夹下创建images文件夹,在images文件夹下创建train和val两个文件夹,分别存放训练集图片和测试集图片. 3.下载labelImg目标检测标注工具 (1)下载地址:https://github.com/tzutalin/labelImg (2)由于LabelImg是用Python编写的,并使用Qt作为其图形界面. 因此,python2安装qt4:…
Ubuntu16.04安装TensorFlow及Mnist训练
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com TensorFlow是Google开发的开源的深度学习框架,也是当前使用最广泛的深度学习框架. 一.安装 ubuntu16.04安装TensorFlow很简单: pip install tensorflow==1.1.0 --user 安装是否成功验证: >>> import tensorflow as tf>>> tf.__version__'1.1.0'>>…
谷歌开源的TensorFlow Object Detection API视频物体识别系统实现(一)[超详细教程] ubuntu16.04版本
谷歌宣布开源其内部使用的 TensorFlow Object Detection API 物体识别系统.本教程针对ubuntu16.04系统,快速搭建环境以及实现视频物体识别系统功能. 本节首先介绍安装环境: 1.首先简单安装tensorflow,一般用户可以直接按照下面的命令进行安装,若不行请转到http://www.cnblogs.com/wmr95/p/7500960.html进行安装. pip install tensorflow (# For CPU) pip install te…
谷歌开源的TensorFlow Object Detection API视频物体识别系统实现(二)[超详细教程] ubuntu16.04版本
本节对应谷歌开源Tensorflow Object Detection API物体识别系统 Quick Start步骤(一): Quick Start: Jupyter notebook for off-the-shelf inference 本节步骤较为简单,具体操作如下: 1.在第一节安装好jupyter之后,在ternimal终端进入到models文件夹目录下,执行命令: jupyter-notebook 2.会在网页打开Jupyter访问object_detection文件夹,进入obj…
使用TensorFlow Object Detection API+Google ML Engine训练自己的手掌识别器
上次使用Google ML Engine跑了一下TensorFlow Object Detection API中的Quick Start(http://www.cnblogs.com/take-fetter/p/8384564.html),但是遇到了很多错误,索性放弃了 这两天索性从自己的数据集开始制作手掌识别器.先放运行结果吧 所有代码文件可在https://github.com/takefetter/hand-detection查看 使用前所需要的准备:1.clone tensorflow…
基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(二)
前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcnn 将上文已完成预数据处理的目录data移动至face_faster_rcnn目录下, 并在face_faster_rcnn目录下创建face_label.pbtxt文件,内容如下: item { id: 1 name: 'face' } 在已下载的TensorFlow Object Detecti…
使用Tensorflow Object Detection进行训练和推理
整体流程(以PASCAL VOC为例) 1.下载PASCAL VOC2012数据集,并将数据集转为tfrecord格式 2.选择并下载预训练模型 3.配置训练文件configuration(所有的训练参数都通过配置文件来配置) 4.训练模型 5.利用tensorboard查看训练过程中loss,accuracy等变化曲线 6.冻结模型参数 7.调用冻结pb文件进行预测 文件格式 首先建立一下文件结构,把models/research/object_detection/data下的label_ma…
谷歌开源的TensorFlow Object Detection API视频物体识别系统实现教程
视频中的物体识别 摘要 物体识别(Object Recognition)在计算机视觉领域里指的是在一张图像或一组视频序列中找到给定的物体.本文主要是利用谷歌开源TensorFlow Object Detection API物体识别系统对视频内容进行识别,下面将详细介绍整个实现过程. 关键词:物体识别:TensorFlow 1.引言 随着人们工作.生活智能化的不断推进,作为智能化承载者----摄像头,充当起了非常重要的"眼"的作用. 物体识别技术能够进一步实现了"脑"…
TensorFlow object detection API
cloud执行:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_pets.md 本地执行:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_locally.md 1. 获取数据Oxford-IIIT Pets Dataset # From t…
Tensorflow object detection API 搭建属于自己的物体识别模型
一.下载Tensorflow object detection API工程源码 网址:https://github.com/tensorflow/models,可通过Git下载,打开Git Bash,输入git clone https://github.com/tensorflow/models.git进行下载. 二.标记需要训练的图片 ①.在第一步下载的工程文件models\research\object_detection目录下,建立一个my_test_images用来放测试test和训练t…