对于torch中训练时,反向传播前将梯度手动清零的理解 简单的理由是因为PyTorch默认会对梯度进行累加.至于为什么PyTorch有这样的特点,在网上找到的解释是说由于PyTorch的动态图和autograd机制使得其非常灵活,这也意味着你可以得到对一个张量的梯度,然后再次用该梯度进行计算,然后又可重新计算对新操作的梯度,对于何时停止前向操作并没有一个确定的点.所以自动设置梯度为0比较棘手,因为你不知道什么时候一个计算会结束以及什么时候又会有一个新的开始.默认累加的好处是当在多任务中对前面共享…
本文转载自:https://www.cnblogs.com/charlotte77/p/5629865.html 一文弄懂神经网络中的反向传播法——BackPropagation   最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题.反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题…
from: 作者:Charlotte77 出处:http://www.cnblogs.com/charlotte77/ 一文弄懂神经网络中的反向传播法——BackPropagation 最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题.反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问…
最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题.反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用.如果不想看公式,可以直接把数值带进去,实际的计算一下,体会一下这个过程之后再来推导公式,这样就会觉得很容…
在看CNN和RNN的相关算法TF实现,总感觉有些细枝末节理解不到位,浮在表面.那么就一点点扣细节吧. 这个作者讲方向传播也是没谁了,666- 原文地址:https://www.cnblogs.com/charlotte77/p/5629865.html 最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题.反…
最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题.反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用.如果不想看公式,可以直接把数值带进去,实际的计算一下,体会一下这个过程之后再来推导公式,这样就会觉得很容…
本文的主要参考:How the backpropagation algorithm works 下面是BP网络的参数结构示意图 首先定义第l层网络第j个神经元的输出(activation) 为了表示简便,令 则有alj=σ(zlj),其中σ是激活函数 定义网络的cost function,其中的n是训练样本的个数. 下面主要介绍使用反向传播来求取cost function相对于权重wij和偏置项bij的导数. 显然,当输入已知时,cost function只是权值w和偏置项b的函数.这里为了方便…
PyTorch中的梯度累加 使用PyTorch实现梯度累加变相扩大batch PyTorch中在反向传播前为什么要手动将梯度清零? - Pascal的回答 - 知乎 https://www.zhihu.com/question/303070254/answer/573037166 这种模式可以让梯度玩出更多花样,比如说梯度累加(gradient accumulation) 传统的训练函数,一个batch是这么训练的: for i,(images,target) in enumerate(trai…
假设一个三层的神经网络结构图如下: 对于一个单独的训练样本x其二次代价函数可以写成: C = 1/2|| y - aL||2 = 1/2∑j(yj - ajL)2 ajL=σ(zjL) zjl = ∑kωjklakl-1 + bjl 代价函数C是ajL的函数,ajL又是zjL的函数,zjL又是ωjkL的函数,同时又是akL-1的函数...... 证明四个基本方程(BP1-BP4),所有这些都是多元微积分的链式法则的推论 δjL = (∂C/∂ajL)σ'(zjL)                …
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_42279044/article/details/101053719 关于数据格式 默认日常描述图片尺寸,采用[w,h]的形式,比如一张图片是1280*800就是指宽w=1280, 高h=800. 因此在cfg中所指定img scale = [1333, 800]就是指w=1333, h=800 从而转入计算机后,要从w,h变成…
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向传播算法要解决的问题 在了解DNN的反向传播算法前,我们先要知道DNN反向传播算法要解决的问题,也就是说,什么时候我们需要这个反向传播算法? 回到我们监督学习的一般问题,假设我们有m个训练样本:$\{(x_1,y_1), (x_2,y_2), ..., (x_m,y_m)\}$,其中$x$为输入向量…
摘要 本节将对反向传播进行直观的理解.反向传播是利用链式法则递归计算表达式的梯度的方法.理解反向传播过程及其精妙之处,对于理解.实现.设计和调试神经网络非常关键.反向求导的核心问题是:给定函数 $f(x)$  ,其中 $x$ 是输入数据的向量,需要计算函数 $f$ 关于 $x$ 的梯度,也就是 $\nabla f(x)$ . 之所以关注上述问题,是因为在神经网络中 $f$ 对应的是损失函数 $L$,输入里面包含训练数据和神经网络的权重.举个例子,损失函数可以是 Hinge Loss ,其输入则包…
基础:逻辑回归 Logistic 回归模型的参数估计为什么不能采用最小二乘法? logistic回归模型的参数估计问题不能“方便地”定义“误差”或者“残差”. 对单个样本: 第i层的权重W[i]维度的行等于i层神经元的个数,列等于i-1层神经元的个数:第i层常数项b[i]b[i]维度的行等于i层神经元的个数,列始终为1. 对m个样本,用for循环不如用矩阵快,输入矩阵X的维度为(nx,m),nx是输入层特征数目. 其中,Z[1]的维度是(4,m),4是隐藏层神经元的个数:A[1]的维度与Z[1]…
下文都将torch.nn简写成nn Module: 就是我们常用的torch.nn.Module类,你定义的所有网络结构都必须继承这个类. Buffer: buffer和parameter相对,就是指那些不需要参与反向传播的参数 示例如下: class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.my_tensor = torch.randn(1) # 参数直接作为模型类成员变量 sel…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/234 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…
这里将讲解tensorflow是如何通过计算图来更新变量和最小化损失函数来反向传播误差的:这步将通过声明优化函数来实现.一旦声明好优化函数,tensorflow将通过它在所有的计算图中解决反向传播的项.当我们传入数据,最小化损失函数,tensorflow会在计算图中根据状态相应的调节变量. 这里先举一个简单的例子,从均值1,标准差为0.1的正态分布中随机抽样100个数,然后乘以变量A,损失函数L2正则函数,也就是实现函数X*A=target,X为100个随机数,target为10,那么A的最优结…
SGD 讲解,梯度下降的做法,随机性.理解反向传播 待办 Stochastic Gradient Descent 随机梯度下降没有用Random这个词,因为它不是完全的随机,而是服从一定的分布的,只是具有随机性在里面. 其中的Stochastic的意思是从x到y的映射: x→yx\to y x→y 给定一个xxx并不能确定地知道输出yyy,而是服从一定的概率分布. 与之对应的是Deterministic这个词,它表示从xxx到yyy的映射是确定的: y=f(x)y=f(x) y=f(x) 具体地…
1.前向传播: template <typename Dtype> void SoftmaxLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { ]->cpu_data(); Dtype* top_data = top[]->mutable_cpu_data(); Dt…
一.前向传播 在caffe中,卷积层做卷积的过程被转化成了由卷积核的参数组成的权重矩阵weights(简记为W)和feature map中的元素组成的输入矩阵(简记为Cin)的矩阵乘积W * Cin.在进行乘积之前,需要对卷积核的参数和feature map作处理,以得到W和Cin. 下面用一个例子来说名上述两个过程.假设某一卷积层输入为c X h X w = 3 X 8 X 8的feature map,卷积核大小h1 X w1 = 2 X 2,个数c1 = 4,stride = 1,pad_h…
caffe中的网络结构是一层连着一层的,在相邻的两层中,可以认为前一层的输出就是后一层的输入,可以等效成如下的模型 可以认为输出top中的每个元素都是输出bottom中所有元素的函数.如果两个神经元之间没有连接,可以认为相应的权重为0.其实上图的模型只适用于全连接层,其他的如卷积层.池化层,x与y之间很多是没有连接的,可以认为很多权重都是0,而池化层中有可能部分x与y之间是相等的,可以认为权重是1. 下面用以上的模型来说明反向传播的过程.在下图中,我用虚线将y与损失Loss之间连接了起来,表示L…
前项计算1 import torch # (3*(x+2)^2)/4 #grad_fn 保留计算的过程 x = torch.ones([2,2],requires_grad=True) print(x) y = x+2 print(y) z = 3*y.pow(2) print(z) out = z.mean() print(out) #带有反向传播属性的tensor不能直接转化为numpy格式,需要先进性detach操作 print(x.detach().numpy()) print(x.nu…
参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-autograd/#detachsource 当我们再训练网络的时候可能希望保持一部分的网络参数不变,只对其中一部分的参数进行调整:或者值训练部分分支网络,并不让其梯度对主网络的梯度造成影响,这时候我们就需要使用detach()函数来切断一些分支的反向传播 1   detach()[source] 返回一个新的Variable,从当前计算图中分离下来的,…
[源码解析] PyTorch 分布式(12) ----- DistributedDataParallel 之 前向传播 目录 [源码解析] PyTorch 分布式(12) ----- DistributedDataParallel 之 前向传播 0x00 摘要 0x01 总体逻辑 0x02 Python 世界 0x03 C++世界 3.1 准备前向传播 3.2 重建桶 3.2.1 计算桶尺寸 3.2.2 同步桶indices 3.2.3 初始化桶 3.3 准备后向传播 3.3.1 重置 3.3.…
[源码解析] PyTorch 分布式(13) ----- DistributedDataParallel 之 反向传播 目录 [源码解析] PyTorch 分布式(13) ----- DistributedDataParallel 之 反向传播 0x00 摘要 0x01 回顾 1.1 前文回顾 1.2 总体逻辑 0x02 从Hook开始 2.1 如何注册hook 2.1.1 AutogradMeta 2.1.2 Node 2.1.3 AccumulateGrad 2.2 构造函数 2.2.1 g…
使用PyTorch构建神经网络以及反向传播计算 前一段时间南京出现了疫情,大概原因是因为境外飞机清洁处理不恰当,导致清理人员感染.话说国外一天不消停,国内就得一直严防死守.沈阳出现了一例感染人员,我在22号乘坐飞机从沈阳乘坐飞机到杭州,恰好我是一位密切接触人员的后三排,就这样我成为了次密切接触人员,人下飞机刚到杭州就被疾控中心带走了,享受了全免费的隔离套餐,不得不说疾控中心大数据把控是真的有力度.在这一段时间,也让我沉下心来去做了点事,之前一直鸽的公众号也开始写上了...不过隔离期间确实让我这么…
神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 Tricks!这是一个让人听了充满神秘和好奇的词.对于我们这些所谓的尝试应用机器学习技术解决某些问题的人,更是如此.曾记得,我们绞尽脑汁,搓手顿足,大喊“为什么我跑的模型不work?”,“为什么我实现的效果那么差?”,“为什么我复现的结果没有他论文里面说的那么好?”.有人会和你说“你不懂调参!里面有…
在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域. 1. RNN概述 在前面讲到的DNN和CNN中,训练样本的输入和输出是比较的确定的.但是有一类问题DNN和CNN不好解决,就是训练样本输入是连续的序列,且序列的长短不…
在循环神经网络(RNN)模型与前向反向传播算法中,我们总结了对RNN模型做了总结.由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long Short-Term Memory),它可以避免常规RNN的梯度消失,因此在工业界得到了广泛的应用.下面我们就对LSTM模型做一个总结. 1. 从RNN到LSTM 在RNN模型里,我们讲到了RNN具有如下的结构,每个序列索引位置t都有一个隐藏状态$h^{(t)}$. 如果我们略去每层都有的$o^{(…
虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解.因此特意先对深度学习中的相关基础概念做一下总结.先看看前向传播算法(Forward propagation)与反向传播算法(Back propagation). 1.前向传播 ​​ 如图所示,这里讲得已经很清楚了,前向传播的思想比较简单. 举个例子,假设上一层结点i,j,k,…等一些结点与本层的结点w有连接,那么结点w的值怎么算呢?就是通过上一层的i,j,k等结点以及对应的连接权值进行加权和运算,最终结果再…