<强化学习>基本概念】的更多相关文章

分布式强化学习基础概念(Distributional RL) from: https://mtomassoli.github.io/2017/12/08/distributional_rl/ 1. Q-learning 在 Q-learning 中,我们想要优化如下的 loss: Distributional RL 的主要思想是:to work directly with the full distribution of the return rather than with its expec…
马尔可夫决策过程MDP,是强化学习的基础. MDP --- <S,A,P,R,γ> AGENT STATE ENV  REWARD   ,由ENV给出.agent处于状态s下,采取action之后离开状态获得一个reward.即f:S x A --->R 所有强化学习问题解决的目标都可以描述成最大化累积奖励.All goals can be described by the maximisation of expected cumulative reward.即我们的目标是最大化Gt .…
https://blog.csdn.net/Mbx8X9u/article/details/80780459 课程主页:http://rll.berkeley.edu/deeprlcourse/ 所有视频的链接:https://www.youtube.com/playlist?list=PLkFD6_40KJIznC9CDbVTjAF2oyt8_VAe3 由于文章较长,且有较多外链接,建议下载PDF版进行阅读 方式一 点击阅读原文即可下载 方式二 返回菜单栏,回复“20180622” 知识背景…
深度强化学习 基本概念 强化学习 强化学习(Reinforcement Learning)是机器学习的一个重要的分支,主要用来解决连续决策的问题.强化学习可以在复杂的.不确定的环境中学习如何实现我们设定的目标. 深度学习 深度学习(Deep Learning)也是机器学习的一个重要分支,也就是多层神经网络,通过多层的非线性函数实现对数据分布及函数模型的拟合.(从统计学角度来看,就是在预测数据分布,从数据中学习到一个模型,然后通过这个模型去预测新的数据) 深度强化学习 深度强化学习(Deep Re…
深度强化学习(DQN-Deep Q Network)之应用-Flappy Bird 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10811587.html 目录 1.达到的目的 2.思路 2.1.强化学习(RL Reinforcement Learing) 2.2.深度学习(卷积神经网络CNN) 3.踩过的坑 4.代码实现(python3.5) 5.运行结果与分析 1.达到的目的 游戏场景:障碍物以一定速度往…
本文主要介绍强化学习的一些基本概念:包括MDP.Bellman方程等, 并且讲述了如何从 MDP 过渡到 Reinforcement Learning. 1. 强化学习基本概念 这里还是放上David Silver的课程的图,可以很清楚的看到整个交互过程.这就是人与环境交互的一种模型化表示,在每个时间点,大脑agent会从可以选择的动作集合A中选择一个动作$a_t$执行.环境则根据agent的动作给agent反馈一个reward $r_t$,同时agent进入一个新的状态. 根据上图的流程,任务…
写在前面的话:从今日起,我会边跟着硅谷大牛Siraj的MOVE 37系列课程学习Reinforcement Learning(强化学习算法),边更新这个系列.课程包含视频和文字,课堂笔记会按视频为单位进行整理. 课程表地址:https://github.com/llSourcell/Move_37_Syllabus 带字幕课程视频地址:https://www.bilibili.com/video/av31518766 本课作为导论,大致普及了一下机器学习和强化学习的概念和用途.其次,捎带介绍了一…
Datawhale开源 核心贡献者:王琦.杨逸远.江季 提起李宏毅老师,熟悉强化学习的读者朋友一定不会陌生.很多人选择的强化学习入门学习材料都是李宏毅老师的台大公开课视频. 现在,强化学习爱好者有更完善的学习资料了! Datawhale开源项目组成员总结了李宏毅的强化学习视频,实现了视频教程的完整梳理和复现,再也不用担心强化学习. 目前,项目已完全开源,包括课程内容.配套的习题和项目,供大家使用. 1. 李宏毅深度强化学习简介 李宏毅老师现任台湾大学电气工程系副教授,主要研究方向是机器学习,特别…
本系列强化学习内容来源自对David Silver课程的学习 课程链接http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html 之前接触过RL(Reinforcement Learning) 并且在组会学习轮讲里讲过一次Policy Gradient,但是由于基础概念不清,虽然当时懂了 但随后很快就忘..虽然现在写这个系列有些晚(没有好好跟上知识潮流o(╥﹏╥)o),但希望能够系统的重新学一遍RL,达到遇到问题能够自动想RL的解决方法的程…
1.策略与环境模型 强化学习是继监督学习和无监督学习之后的第三种机器学习方法.强化学习的整个过程如下图所示: 具体的过程可以分解为三个步骤: 1)根据当前的状态 $s_t$ 选择要执行的动作 $ a_t $. 2)根据当前的状态 $s_t $ 和动作 $ a_t$ 选择转移后的状态 $s_{t+1} $. 3)根据在当前状态 $s_t$ 采取动作 $a_t$ 给出对应的奖励 $ r_{t+1} $. 因此我们可以得到强化学习中三个重要的要素:环境的状态 $S$,个体的动作 $A$,环境的奖励 $…