入门大数据---Hive常用DDL操作】的更多相关文章

一.Database 1.1 查看数据列表 show databases; 1.2 使用数据库 USE database_name; 1.3 新建数据库 语法: CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name --DATABASE|SCHEMA 是等价的 [COMMENT database_comment] --数据库注释 [LOCATION hdfs_path] --存储在 HDFS 上的位置 [WITH DBPROPERTIES…
Hive 常用DML操作 一.加载文件数据到表 1.1 语法 LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)] LOCAL 关键字代表从本地文件系统加载文件,省略则代表从 HDFS 上加载文件: 从本地文件系统加载文件时, filepath 可以是绝对路径也可以是相对路径 (建议使用绝对路径): 从 HDFS 加载文…
一.Database 1.1 查看数据列表 show databases; 1.2 使用数据库 USE database_name; 1.3 新建数据库 语法: CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name --DATABASE|SCHEMA是等价的 [COMMENT database_comment] --数据库注释 [LOCATION hdfs_path] --存储在HDFS上的位置 [WITH DBPROPERTIES (pr…
一.Database 1.1 查看数据列表 show databases; 1.2 使用数据库 USE database_name; 1.3 新建数据库 语法: CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name --DATABASE|SCHEMA 是等价的 [COMMENT database_comment] --数据库注释 [LOCATION hdfs_path] --存储在 HDFS 上的位置 [WITH DBPROPERTIES…
本博客主要介绍Hive和MySql的搭建:  学习视频一天就讲完了,我看完了自己搭建MySql遇到了一堆坑,然后花了快两天才解决完,终于把MySql搭建好了.然后又去搭建Hive,又遇到了很多坑,就这样一直解决问题,加上网上搜索和个人排查检查日志.搜索百度,百度不行搜索Bing,看了csdn,看strackflow,最后终于功夫不负有心人,成功把MySql和Hive跑起来了.这里我将还原最初状态,并把遇到的坑一并记录下,同时防止后人采坑. 搭建环境: Centos7,MySql14.14,Hiv…
一.前言 Hive默认计算引擎时MR,为了提高计算速度,我们可以改为Tez引擎.至于为什么提高了计算速度,可以参考下图: 用Hive直接编写MR程序,假设有四个有依赖关系的MR作业,上图中,绿色是Reduce Task,云状表示写屏蔽,需要将中间结果持久化写到HDFS. Tez可以将多个有依赖的作业转换为一个作业,这样只需写一次HDFS,且中间节点较少,从而大大提升作业的计算性能. 二.安装包准备 1)下载tez的依赖包:http://tez.apache.org 2)拷贝apache-tez-…
这篇文章主要介绍Hive的概念. 简介: Hive中文名叫数据仓库管理系统,之前我们操作MapReduce必须通过编写代码或者通过特殊命令来实现,有了Hive我们通过常用的SQL语句就能操作MapReduce集群了.是不是感觉很方便. 这也是方便不懂MapReduce原理,懂SQL语句的人用的. 有好几个公司都推出了自己的Hive,其中比较出名的是Apache Hive,CDH Hive,HDP Hive和MapR Hive,大家刚开始学习大部分都用的Apache Hive,但是公司中却很少使用…
一.分区表 1.1 概念 Hive 中的表对应为 HDFS 上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大. 分区为 HDFS 上表目录的子目录,数据按照分区存储在子目录中.如果查询的 where 字句的中包含分区条件,则直接从该分区去查找,而不是扫描整个表目录,合理的分区设计可以极大提高查询速度和性能. 这里说明一下分区表并 Hive 独有的概念,实际上这个概念非常常见.比如在我们常用的 Oracle 数据库中,当表中的数据量不断增大,查询数据的速度就会下降,…
一.数据准备 为了演示查询操作,这里需要预先创建三张表,并加载测试数据. 数据文件 emp.txt 和 dept.txt 可以从本仓库的resources 目录下载. 1.1 员工表 -- 建表语句 CREATE TABLE emp( empno INT, -- 员工表编号 ename STRING, -- 员工姓名 job STRING, -- 职位类型 mgr INT, hiredate TIMESTAMP, --雇佣日期 sal DECIMAL(7,2), --工资 comm DECIMA…
一.简单聚合 1.1 数据准备 // 需要导入 spark sql 内置的函数包 import org.apache.spark.sql.functions._ val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate() val empDF = spark.read.json("/usr/file/json/emp.json"…