ctr预估模型】的更多相关文章

https://zhuanlan.zhihu.com/p/35465875 学习和预测用户的反馈对于个性化推荐.信息检索和在线广告等领域都有着极其重要的作用.在这些领域,用户的反馈行为包括点击.收藏.购买等.本文以点击率(CTR)预估为例,介绍常用的CTR预估模型,试图找出它们之间的关联和演化规律. 数据特点 在电商领域,CTR预估模型的原始特征数据通常包括多个类别,比如[Weekday=Tuesday,Gender=Male, City=London, CategoryId=16],这些原始特…
从FM推演各深度CTR预估模型(附代码) 2018年07月13日 15:04:34 阅读数:584 作者: 龙心尘 && 寒小阳 时间:2018年7月 出处: 龙心尘 寒小阳…
原文:http://www.52cs.org/?p=1046 闲聊DNN CTR预估模型 Written by b manongb 作者:Kintocai, 北京大学硕士, 现就职于腾讯. 伦敦大学张伟楠博士在携程深度学习Meetup[1]上分享了Talk<Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction in Display Ads>.他在2016 ECIR发表…
众所周知,深度学习在计算机视觉.语音识别.自然语言处理等领域最先取得突破并成为主流方法.但是,深度学习为什么是在这些领域而不是其他领域最先成功呢?我想一个原因就是图像.语音.文本数据在空间和时间上具有一定的内在关联性.比如,图像中会有大量的像素与周围的像素比较类似:文本数据中语言会受到语法规则的限制.CNN对于空间特征有很好的学习能力,正如RNN对于时序特征有强大的表示能力一样,因此CNN和RNN在上述领域各领风骚好多年. 在Web-scale的搜索.推荐和广告系统中,特征数据具有高维.稀疏.多…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] [再啰嗦一下]如果你对智能推荐感兴趣,欢迎先浏览我的另一篇随笔:智能推荐算法演变及学习笔记 [最后再说一下]本文只对智能推荐算法中的CTR预估模型演变进行具体介绍! 一.传统CTR预估模型演变 1. LR 即逻辑回归.LR模型先求得各特征的加权和,再添加sigmoid函数. 使用各特征的加权和,是为了考虑不同特征的重要程度 使用sigmoid函数,是为了将值映射到 [0, 1…
前言:我在github上创建了一个新的repo:PaddleAI, 准备用Paddle做的一系列有趣又实用的案例,所有的案例都会上传数据代码和预训练模型,下载后可以在30s内上手,跑demo出结果,让大家尽快看到训练结果,用小批量数据调试,再用全量数据跑模型,当然,也可以基于我上传的预训练模型进行迁移学习,如果大家有需要的话.今天刚写好第一个项目,用Paddle做广告CTR预估,来源于Kaggle的比赛Display Advertising Challenge, 感兴趣的读者往下看-(也可以留言…
http://wenku.baidu.com/course/view/1488bfd5b9f3f90f76c61b8d…
背景 假设现在有个商品点击预测的任务,有用户端特征性别.年龄.消费力等,商品侧特征价格.销量等,样本为0或者1,现在对特征进行one hot encode,如性别特征用二维表示,男为[1,0],女为[0,1],其他特征相同处理后拼接起来一共有n维,n是所有特征的类别数之和. Logistic Regression(LR)与二阶 线性模型,y = sigmoid(w, x),w有n维,优点是简单易解释,缺点是太简单,无法挖掘特征组合的情况,如男性+游戏类商品可能是个很强特征.为了弥补这个缺点往往需…
计算广告领域中数据特点:    1 正负样本不平衡    2 大量id类特征,高维,多领域(一个类别型特征就是一个field,比如上面的Weekday.Gender.City这是三个field),稀疏 在电商领域,CTR预估模型的原始特征数据通常包括多个类别,比如[Weekday=Tuesday,Gender=Male, City=London, CategoryId=16],这些原始特征通常以独热编码(one-hot encoding)的方式转化为高维稀疏二值向量,多个域(类别)对应的编码向量…
计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践 2018年06月13日 16:38:11 轻春 阅读数 6004更多 分类专栏: 机器学习 机器学习荐货情报局   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u010352603/article/details/80681100 计算广告CTR预估系列(七)–Facebook经典模型LR+GBDT理论与…
ctr预估简单的解释就是预测用户的点击item的概率.为什么一个回归的问题需要使用分类的方法来评估,这真是一个好问题,尝试从下面几个关键问题去回答. 1.ctr预估是特殊的回归问题 ctr预估的目标函数为 f(x)=P(+1|x) 特殊之处在于目标函数的值域为[0,1],而且由于是条件概率,具有如下特性 如果将ctr预估按照一般的回归问题处理(如使用Linear Regression),面临的问题是一般的linear regression的值域范围是实数域,对于整个实数域的敏感程度是相同的,所以…
原文:http://wbj0110.iteye.com/blog/2043065 该文是百度文库课程<计算广告学之内容匹配广告&展示广告原理.技术和实践>的课程笔记,感谢百度! 课程地址http://wenku.baidu.com/course/view/1488bfd5b9f3f90f76c61b8d 第三章:网盟CTR预估 第三章主要包括三小节:CTR预估背景,CTR预估特点,CTR预估模型 CTR即广告点击率   第一节:CTR预估背景 在点击计费时,用得最多的是广义二阶价格拍卖…
1.CTR CTR预估是对每次广告的点击情况做出预测,预测用户是点击还是不点击. CTR预估和很多因素相关,比如历史点击率.广告位置.时间.用户等. CTR预估模型就是综合考虑各种因素.特征,在大量历史数据上训练得到的模型. CTR预估的训练样本一般从历史log.离线特征库获得. 样本标签相对容易,用户点击标记为1,没有点击标记为0.特征则会考虑很多,例如用户的人口学特征.广告自身特征.广告展示特征等.这些特征中会用到很多类别特征,例如用户所属职业.广告展示的IP地址等.一般对于类别特征会采样O…
今天第二篇(最近更新的都是Deep模型,传统的线性模型会后面找个时间更新的哈).本篇介绍华为的DeepFM模型 (2017年),此模型在 Wide&Deep 的基础上进行改进,成功解决了一些问题,具体的话下面一起来看下吧. 原文:Deepfm: a factorization-machine based neural network for ctr prediction 地址:http://www.ijcai.org/proceedings/2017/0239.pdf 1.问题由来 1.1.背景…
-------倒叙查看本文. 6,用auc对测试的结果进行评估: auc代码如下: #!/usr/bin/env python import sys def auc(labels,predicted_ctr): i_sorted = sorted(range(len(predicted_ctr)),key = lambda i : predicted_ctr[i],reverse = True) auc_temp = 0.0 tp = 0.0 tp_pre = 0.0 fp = 0.0 fp_p…
1 离线指标 1.1 LogLoss 1.1.1 KL散度 logloss使用KL散度来计算.设样本的真实分布为P,预测分布为Q,则KL散度定义如下: 这里可以通俗地把KL散度理解为相同事件空间里两个概率分布的相异情况.KL散度越小,预测分布越接近真实分布. KL散度的物理意义是:使用分布Q来对真实分布为P的事件进行编码,导致平均编码长度增加了多少.具体解释可见百度和知乎. 1.1.2 CTR中KL散度的计算 CTR预估中,上面的概率分布为二项分布.设真实的点击率是tctr,预测的点击率是pct…
项目介绍 给定查询和用户信息后预测广告点击率 搜索广告是近年来互联网的主流营收来源之一.在搜索广告背后,一个关键技术就是点击率预测-----pCTR(predict the click-through rate),由于搜索广告背后的经济模型(economic model )需要pCTR的值来对广告排名及对点击定价.本次作业提供的训练实例源于腾讯搜索引擎的会话日志(sessions logs), soso.com,要求学员们精准预测测试实例中的广告点击率. 训练数据文件TRAINING DATA…
本文介绍CTR相关基础知识. 一.广告投放系统 广告系统包含多个子系统.除了上图所示的广告投放系统外,还包含商业系统(广告库的获得),统计系统(点击展示日志的获得)等. 广告投放系统主要是面向用户的,交互逻辑就是用户请求一个网页之后,会想检索系统请求广告,然后检索系统从广告库中获取一个广告列表,进行特征抽取之后进行点击率预估,排名靠前的展示给 用户.然后根据用户的点击情况获得展示点击日志,之后进行线          下的模型训练学习.之前的广告投放系统分为线上系统和线下模型训练系统,现在出现的…
http://www.cbdio.com/BigData/2015-08/27/content_3750170.htm 1.背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间 [2],映射后的函数值就是CTR的预估值.LR,逻辑…
1. 背景介绍 广告形式: 互联网广告可以分为以下三种: 1)展示广告(display ad) 2)搜索广告(sponsored search ad) 3)上下文广告(contextual ad)   竞价模式: 对于在线广告,主要有以下几种竞价模式: 1)pay-per-impression(按展示付费):广告商按照广告被展示的次数付费,这是一种最普遍的竞价模型.缺点在于没有考虑投放广告的效果. 2)pay-per-action(按行为付费):只有在广告产生了销售或者类似的一些转化时,广告商才…
1GBDT和LR融合      LR模型是线性的,处理能力有限,所以要想处理大规模问题,需要大量人力进行特征工程,组合相似的特征,例如user和Ad维度的特征进行组合.      GDBT天然适合做特征提取,因为GBDT由回归树组成所以, 每棵回归树就是天然的有区分性的特征及组合特征,然后给LR模型训练,提高点击率预估模型(腾讯).      例如,输入样本x,GBDT模型得到两颗树tree1和tree2,遍历两颗树,每个叶子节点都是LR模型的一个维度特征,在求和每个叶子*权重及时LR模型的分类…
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:苏博览 深度学习应该这一两年计算机圈子里最热的一个词了.基于深度学习,工程师们在图像,语音,NLP等领域都取得了令人振奋的进展.而深度学习本身也在不断的探索和发展中,其潜力的极限目前还没有被看到. 当然,深度学习也不是万能的,比如有很多问题的特征是易于提取的,我们可以直接使用SVM, 决策树的算法来取得很好的结果.而深度学习并不能提供太多的帮助.还有一些问题,我们并没有足够数量的数据,我们也很难通过深度学习算法来得到可用的模型.…
周末看了一下这篇论文,觉得挺难的,后来想想是ICML的论文,也就明白为什么了. 先简单记录下来,以后会继续添加内容. 主要参考了论文Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine(下载链接:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.56…
1.背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间 [2],映射后的函数值就是CTR的预估值.LR,逻辑回归模型,这种线性模型很容易并行化,处理上亿条训练样本不是问题,但线性模型学习能力有限,需要大量特征工程预先分析出有效的…
https://blog.csdn.net/john_xyz/article/details/78933253 目录目录CTR预估综述Factorization Machines(FM)算法原理代码实现Field-aware Factorization Machines(FFM)算法原理代码实现Deep FM算法原理代码实现参考文献CTR预估综述点击率(Click through rate)是点击特定链接的用户与查看页面,电子邮件或广告的总用户数量之比. 它通常用于衡量某个网站的在线广告活动是否…
1. 背景 CTR预估(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间[2],映射后的函数值就是CTR的预估值.LR这种线性模型很容易并行化,处理上亿条训练样本不是问题,但线性模型学习能力有限,需要大量特征工程预先分析出有效的特征.特征组合,从而去间接增…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由鹅厂优文发表于云+社区专栏 一.前言 二.深度学习模型 1. Factorization-machine(FM) FM = LR+ embedding 2. Deep Neural Network(DNN) 3. Factorisation-machine supported Neural Networks (FNN) 4. Product-based Neural Network(PNN) 5. Wide & Deep Lear…
1. 背景介绍 广告形式: 互联网广告可以分为以下三种: 1)展示广告(display ad) 2)搜索广告(sponsored search ad) 3)上下文广告(contextual ad)   竞价模式: 对于在线广告,主要有以下几种竞价模式: 1)pay-per-impression(按展示付费):广告商按照广告被展示的次数付费,这是一种最普遍的竞价模型.缺点在于没有考虑投放广告的效果. 2)pay-per-action(按行为付费):只有在广告产生了销售或者类似的一些转化时,广告商才…
原文:http://blog.csdn.net/hero_fantao/article/details/42747281 Display Advertising Challenge ---------2015/1/12 一:背景 CriteoLabs 2014年7月份在kaggle上发起了一次关于展示广告点击率的预估比赛.CriteoLabs是第三方展示广告的佼佼者,所以这次比赛吸引了很多团队来参赛和体验数据. 二:评估指标 比赛采用的评价指标是LoglLoss: 至于离线评估为何更倾向采用lo…
https://www.cnblogs.com/futurehau/p/6184585.html 1. CTR预估的流程 数据 -> 预处理 ->特征抽取 ->模型训练 ->后处理 特征决定了达到好的评价指标的上限,模型决定了接近这个上限的程度. 2. 数据预处理 label匹配:展示日志和点击日志做一个join 采样: 负采样(广告点击率很低,随机丢弃一部分负样本 组合相关信息: 相关信息需要到别的文件中去找,所以需要组合相关信息.比如:如果需要查看某个query_id代表的是什…