pandas 对象拥有一组常用的数学和统计方法. 他们大部分都属于简约和汇总统计, 用于从Series中提取单个值(如sum或mean) 或从DataFrame的行或列中提取一个Series.跟对应的Numpy数组方法对比, 他们都是基于没有缺失数据的假设而构建的. 看例子: sum方法 调用DataFrame的sum方法将会返回一个含有列小计的Series: 行求和 传入axis=1 将会按行进行求和运算: 自动排除NA值 除非整个切片(这里指的是行或列)都是NA.通过skipna选项可以禁用…
pd对象拥有一组常用的数学和统计方法.大部分都属于约简和汇总统计,用于从Series中单个值,如sum 和 mean 或从DF的行或列中提取一个Series. 1. 描述和汇总统计方法 #汇总和计算描述统计 import numpy as np import pandas as pd #定义一个4*2维的数据结构 df = pd.DataFrame([[1.4, np.nan], [7.1, -4.5], [np.nan, np.nan], [0.75, -1.3]], index = list…
Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Python第三方库 所属专栏: python第三方库 pandas是什么? 是它吗?....很显然pandas没有这个家伙那么可爱....我们来看看pandas的官网是怎么来定义自己的:pandas is an open source, easy-to-use data structures and d…
1引言 本文总结Pandas中两种常用的数据类型: (1)Series是一种一维的带标签数组对象. (2)DataFrame,二维,Series容器 2 Series数组 2.1 Series数组构成 Series数组对象由两部分构成: 值(value):一维数组的各元素值,是一个ndarray类型数据. 索引(index):与一维数组值一一对应的标签.利用索引,我们可非常方便得在Series数组中进行取值. 如下所示,我们通过字典创建了一个Series数组,输出结果的第一列就是索引,第二列就是…
Python 数据分析:Pandas 缺省值的判断 背景 我们从数据库中取出数据存入 Pandas None 转换成 NaN 或 NaT.但是,我们将 Pandas 数据写入数据库时又需要转换成 None,不然就会报错.因此,我们就需要处理 Pandas 的缺省值. 样本数据 id name password sn sex age amount content remark login_date login_at created_at 0 1 123456789.0 NaN NaN NaN 20…
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Ser…
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Ser…
从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设s为pandas.core.series.Series的一个实例化对象,设df为pandas.core.frame.DataFrame的一个实例化对象 1. Pandas简介 Pandas是基于NumPy的python数据分析库,最初被作为金融数据分析工具而开发出来,因此Pandas为时间序列分析提…
1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式基本一致,本文主要以Dataframe为例进行介绍. 在Dataframe中选取数据大抵包括3中情况: 1)行(列)选取(单维度选取):df[].这种情况一次只能选取行或者列,即一次选取中,只能为行或者列设置筛选条件(只能为一个维度设置筛选条件). 2…
pandas对象拥有一组常用的数学和统计方法,大部分都属于约简和汇总统计,用于从Series中提取单个的值,或者从DataFrame中的行或列中提取一个Series.相比Numpy而言,Numpy都是基于没有缺失数据的假设而构建的. 来看一个简单的例子 In [6]: df=DataFrame([[1.4,np.nan],[7,-4],[np.nan,np.nan],[0.75,-1.3]],index=['a ...: ','b','c','d'],columns=['one','two'])…