1116: Let it Bead  Time Limit(Common/Java):1000MS/10000MS     Memory Limit:65536KByteTotal Submit: 7            Accepted:4 Description "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the compa…
我们在高中的组合数学中常常会碰到有关涂色的问题,例如:用红蓝两种颜色给正方形的四个顶点涂色,会有几种不同的方案.在当时,我们下意识的认为,正方形的四个顶点是各不相同的,即正方形是固定的.而实际上我们知道,正方形是中心对称图形,我们在得到某种方案后,经过旋转,可能会得到之后我们得到的一个看似是全新的方案,实际上这种方案被重复计算了两次,那么,如果我们要讨论涂色问题中有多少本质不同的方案,应该如何解决呢?   今天介绍的Burnside引理,就是专门解决这类问题而生的.      基于对数据的更加抽…
在处理类似下面的问题中,一般的计数方法会出现问题:假如你要用红.蓝两种颜色给一个正四面体的四个顶点着色,试问存在多少种不同的着色方案? 在高中我们常用的方法是模拟涂色过程,分情况讨论,然后基于分步乘法原理.但是在那里没有考虑几何体通过旋转等操作带来的对称性,在本文中,我们就来介绍一种专门处理这类问题的工具——Polya计数. 首先我们要做的是引入一些基本的概念. 置换: 关于置换更多的细节我们在<抽象代数基础教程>中继续讨论,这里我们只需简单的了解其概念即可. 关于置换还需要了解的就是它的合乘…
Birthday Toy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 644    Accepted Submission(s): 326 Problem Description AekdyCoin loves toys. It is AekdyCoin’s Birthday today and he gets a special “…
Let it Bead Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5365   Accepted: 3585 Description "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is b…
似乎是比较基础的一道用到polya定理的题,为了这道题扣了半天组合数学和数论. 等价的题意:可以当成是给正n边形的顶点染色,旋转同构,两种颜色,假设是红蓝,相邻顶点不能同时为蓝. 大概思路:在不考虑旋转同构的情况下,正n边形有fib(n+1)+fib(n-1)种染色方法(n==1特判),然后后面就是套公式了,涉及到要用欧拉定理优化,不然会T.(理论的东西看下组合数学书中polya计数部分,及数论书中欧拉函数部分中 n的约数的欧拉函数,感觉看博客不如系统的看看书,再结合一下网上一些比较基础的pol…
Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 218    Accepted Submission(s): 106 Problem Description You may not know this but it's a fact that Xinghai Square is…
Who's Aunt Zhang Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 19    Accepted Submission(s): 16 Problem Description Aunt Zhang, well known as 张阿姨, is a fan of Rubik’s cube. One day she buys a…
群论&Polya计数 其实在我听课的过程中,我发现针对于学习OI中的群并没有什么过多必要向内学习... 群 以后会补的. 就是\(QQ\)群. 置换 置换就是一个... \[ \begin{matrix} 1& 2& 3& 4& 5& ...& n\\ p_1& p_2& p_3& p_4& p_5& ...& p_n \end{matrix} \] \(p\)是一个\(n\)的排列. Burnside…
1 群 群$(G, cdot)$: 闭合, 结合律, 幺元, 逆 1.1 置换群 置换为双射$pi:[n]to [n]$, 置换之间的操作符 $cdot$ 定义为函数的复合, 即$(pi cdot sigma)(i)=pi(sigma(i))$ 对称群$S_n$ $S_n$表示$[n]$的所有置换的集合. 容易验证$S_n$和函数复合操作 $cdot$ 构成一个群, 称为$n$元对称群.$S_n$的子群称为置换群. 循环群$C_n$ 定义特殊的置换$sigma$满足$forall i, ~sig…