机器学习: 特征脸算法 EigenFaces】的更多相关文章

人脸识别是机器学习和机器视觉领域非常重要的一个研究方向,而特征脸算法是人脸识别里非常经典的一个算法,EigenFaces 是基于PCA (principal component analysis) 即主分量分析的. 一张尺寸为 w×h 的人脸图像 Ii可以看成是一个 D×1 的列向量, x∈RD,其中 D=w×h, 那么,给定一个训练集 S, 含有 m 张人脸图像, 即: S={xi},i=1,2,...m, 简单来说,我们希望通过一些线性映射,将原始向量 x 从高维空间 RD 变换到一个低维空…
http://xuewen.cnki.net/DownloadArticle.aspx?filename=BMKJ201104017&dbtype=CJFD<浅析基于DNS协议的隐蔽通道及监测技术>DNS隐蔽通道监测主要采用特征匹配和流量异常检测这两种技术.3.1 特征匹配技术特 征 匹 配 技 术 通 过 网 络 通 信 报 文 特 征 来 识别 D N S 隐 蔽 通 道 . S n o r t 通 过 以 下 规 则 来 识 别NSTX和Iodine隐蔽通道:alert udp…
PCA算法可以使得高维数据(mxn)降到低维,而在整个降维的过程中会丢失一定的信息,也会因此而实现降噪除噪的效果,另外,它通过降维可以计算出原本数据集的主成分分量Wk矩阵(kxn),如果将其作为数据样本,则可以将其作为原来数据集特征的主特征分量,如果用在人脸识别领域则可以作为人脸数据集的特征脸具体实现降噪效果和人脸特征脸的代码如下所示: #1-1利用手写字体数据集MNIST对PCA算法进行使用和效果对比,体现PCA算法的降噪功能from sklearn import datasetsdigits…
一.思维理解 X:原始数据集: Wk:原始数据集 X 的前 K 个主成分: Xk:n 维的原始数据降维到 k 维后的数据集: 将原始数据集降维,就是将数据集中的每一个样本降维:X(i) . WkT = Xk(i): 在人脸识别中,X 中的每一行(一个样本)就是一张人脸信息: 思维:其实 Wk 也有 n 列,如果将 Wk 的每一行看做一个样本,则第一行代表的样本为最重要的样本,因为它最能反映 X 中数据的分布,第二行为次重要的样本:在人脸识别中,X 中的每一行是一个人脸的图像,则 Wk 的每一行也…
机器学习笔记 多项式回归这一篇中,我们讲到了如何构造新的特征,相当于对样本数据进行升维. 那么相应的,我们肯定有数据的降维.那么现在思考两个问题 为什么需要降维 为什么可以降维 第一个问题很好理解,假设我们用KNN训练一些样本数据,相比于有1W个特征的样本,肯定是训练有1K个特征的样本速度更快,因为计算量更小嘛. 第二个问题,为什么可以降维.一个样本原先有1W个特征,现在减少到1K个,不管如何变换,数据包含的信息肯定是减少了,这是毫无疑问的.但是信息的减少是否意味着我们对于样本的认知能力的下降?…
在之前的博客  人脸识别经典算法一:特征脸方法(Eigenface)  里面介绍了特征脸方法的原理,但是并没有对它用到的理论基础PCA做介绍,现在做补充.请将这两篇博文结合起来阅读.以下内容大部分参考自斯坦福机器学习课程:http://cs229.stanford.edu/materials.html 假设我们有一个关于机动车属性的数据集{x(i);i=1,...,m}(m代表机动车的属性个数),例如最大速度,最大转弯半径等.假设x(i)本质上是n维的空间的一个元素,其中n<<m,但是n对我们…
考虑到知识的复杂性,连续性,将本算法及应用分为3篇文章,请关注,将在本月逐步发表. 1.机器学习之PageRank算法应用与C#实现(1)算法介绍 2.机器学习之PageRank算法应用与C#实现(2)球队排名应用与C#代码 3.机器学习之PageRank算法应用与C#实现(3)球队实力排名应用与C#代码 Pagerank是Google排名运算法则(排名公式)的一部分,是Google用于用来标识网页的等级/重要性的一种方法,是Google用来衡量一个网站的好坏的唯一标准.在揉合了诸如Title标…
绘制了一张导图,有不对的地方欢迎指正: 下载地址 机器学习中,特征是很关键的.其中包括,特征的提取和特征的选择.他们是降维的两种方法,但又有所不同: 特征抽取(Feature Extraction):Creatting a subset of new features by combinations of the exsiting features.也就是说,特征抽取后的新特征是原来特征的一个映射. 特征选择(Feature Selection):choosing a subset of all…
原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自动机器学习.机器学习与最优化算法,选取23篇会议上入选的重点论文进行分析解读,与大家分享.Enjoy! NeurIPS (Conference on Neural Information Processing Systems,神经信息处理系统进展大会)与ICML并称为神经计算和机器学习领域两大顶级学…
参考:机器学习&深度学习算法及代码实现 Python3机器学习 传统机器学习算法 决策树.K邻近算法.支持向量机.朴素贝叶斯.神经网络.Logistic回归算法,聚类等. 一.机器学习算法及代码实现–决策树 决策树学习笔记(Decision Tree) 引自:Python3<机器学习实战>学习笔记(二):决策树基础篇之让我们从相亲说起 github:https://github.com/Jack-Cherish/Machine-Learning/tree/master/Decision…