BZOJ-4488:最大公约数(GCD)】的更多相关文章

首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1 5 1 1 5 1 5 2 Sample Output 14 3 HI…
1011 最大公约数GCD 基准时间限制:1 秒 空间限制:131072 KB 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) Output 输出A与B的最大公约数. Input示例 30 105 Output示例 15 import java.util.Scanner; public class Main { static int gcd(int a,int b){ return a%b==0? b:gcd(b,a%…
1011 最大公约数GCD 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) Output 输出A与B的最大公约数. Input示例 30 105 Output示例 15 源代码: <span style="font-size:18px;">#include<iostream> #in…
给出两个数a.b,求最大公约数(GCD)与最小公倍数(LCM) 一.最大公约数(GCD)    最大公约数的递归:  * 1.若a可以整除b,则最大公约数是b  * 2.如果1不成立,最大公约数便是b与a%b的最大公约数  * 示例:求(140,21)  * 140%21 = 14  * 21%14 = 7  * 14%7 = 0  * 返回7 代码如下,非常简单,一行就够了: int GCD(int a,int b) { return a%b?GCD(b,a%b):b; }  二.最小公倍数(…
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对.q组询问 分析 我们要求的是 \[\sum_{p \in P} \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=p]\](大写P表示质数集合) 根据\(kgcd(i,j)=gcd(ki,kj)\), \[原式=\sum_{p \in P} \sum_{i=1}^{\lfloo…
Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列 {Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R) = (R-L+1) ∗ gcd (Al..Ar). JYY 希望找出权值最大的子序列. Input 输入一行包含一个正整数 N. 接下来一行,包含 N个正整数,表示序列Ai 1 < =  Ai < =  10^12, 1 < =  N < =  100,000 Output 输出…
任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=4028 4028: [HEOI2015]公约数数列 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1177  Solved: 456[Submit][Status][Discuss] Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. MODIFY…
[Jsoi2015]最大公约数 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 302  Solved: 169[Submit][Status][Discuss] Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R) = (R-L+1) ∗ gcd (Al..Ar). JYY 希望找出权值最大的子序列…
传送门 不知谁说过一句名句,我们要学会复杂度分析 #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for(int i=a;i<=b;++i) #define fd(i,a,b) for(int i=a;i>=b;--i) ; typedef long long ll; inline ll gi() { ll x=; char o; bool f=true; for(;!isdigit(o=getcha…
思路: 一开始 我是想 对于固定的左端点 从左到右 最多有 log种取值  且单调递减  那不妨倍增预处理+二分GCD在哪变了.. 复杂度O(nlog^2n) gcd最多log种取值.. 好了我们可以暴力了... 复杂度O(nlogn) //By SiriusRen #include <cstdio> #include <algorithm> using namespace std; typedef long long ll; int cases,n,top,temp; ll xx…