快速入门Numpy】的更多相关文章

教你十分钟学会使用numpy. 简单介绍一下numpy的话,这就是一个基于多维数组的python科学计算的核心库. 基本信息 # 一般用np作为numpy的缩写 import numpy as np # 这里创建了一个数组 之后详细说明 arr = np.array([[[1], [2]], [[3], [4]]], dtype=np.int32) # 数组的维度 arr.ndim # 数组的各个维度的长度 arr.shape # 数组元素个数 arr.size 索引对象 这里要说一个贯穿数据索…
numpy快速入门 numpy是python的科学计算的核心库,很多更高层次的库都基于numpy.博主不太喜欢重量级的MATLAB,于是用numpy进行科学计算成为了不二选择. 本文主要参考Scipy关于numpy的quickstart. 基础篇 numpy的主要研究对象是同质多维数组,同质表示数据类型一致,多维表示有多个维度.举个例子就是以下形式: #生成范围为1~100,大小为3x4的随机矩阵 In [25]: x = np.random.randint(1,100,size=(3,4))…
pandas快速入门 numpy之后让我们紧接着学习pandas.Pandas最初被作为金融数据分析工具而开发出来,后来因为其强大性以及友好性,在数据分析领域被广泛使用,下面让我们一窥究竟. 本文参考官网给出的10 Minutes to pandas 对象创建 创建Series #创建Series对象,index参数可省,默认为0~n-1的数字索引 #与numpy中的array一样,统一Series要求数据类型一致,这样可以加快处理速度 In [12]: s = pd.Series([1,2,3…
一.什么是numpy Numpy提供了一个在Python中做科学计算的基础库,重在数值计算,主要用于处理多维数组(矩阵)的库.用来存储和处理大型矩阵,比Python自身的嵌套列表结构要高效的多.本身是由C语言开发,是个很基础的扩展,Python其余的科学计算扩展大部分都是以此为基础. 二.快速入门numpy库 1.导入numpy(安装anaconda已带很多科学计算包,无需安装导入即可) 导入画图工具matplotlib,用于数据分析与可视化 打开一张猫的图片,发现计算机眼里,它只是一个数组,这…
始终无法有效把word排版好的粘贴过来,排版更佳版本请见知乎文章: https://zhuanlan.zhihu.com/p/24309547 实在搞不定博客园的排版,排版更佳的版本在: 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇 5.3 Python的科学计算包 - Numpy numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算.这个库的前身是1995年就开始开发的一个用于数组运算的库.经过了长时间…
Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言.在本文中,我们将介绍 Jupyter notebook 的主要特性,以及为什么对于希望编写漂亮的交互式文档的人来说是一个强大工具. 在开始使用 notebook 之前,我们先需要安装该库.你可以在Jupyter 官网上找到完整的步骤. 译者注:其实只要pip install jupyter就可以了 jupyter notebook 运行上面的命令之后,你将看到类似下面…
h5py是Python语言用来操作HDF5的模块.下面的文章主要介绍h5py的快速入门指南,翻译自h5py的官方文档:http://docs.h5py.org/en/latest/quick.html .该翻译仅为个人学习h5py为目的,如有翻译不当之处,请速联系笔者或提供正确的翻译,非常感谢! 安装 使用Anaconda或者Miniconda: conda install h5py 用Enthought Canopy,可以使用GUI安装包安装或用 enpkg h5py 安装.用pip或setu…
from:https://blog.csdn.net/m0_37338590/article/details/78862488 一.简介: Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言.在本文中,我们将介绍 Jupyter notebook 的主要特性,以及为什么对于希望编写漂亮的交互式文档的人来说是一个强大工具. Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支…
Python pandas快速入门2017年03月14日 17:17:52 青盏 阅读数:14292 标签: python numpy 数据分析 更多 个人分类: machine learning 来自官网十分钟教学 Pandas的主要数据结构:DimensionsNameDescription1Series1D labeled homogeneously-typed array2DataFrameGeneral 2D labeled, size-mutable tabular structur…
本文的例子需要一些特殊设置,具体可以参考 Pandas快速入门(一) 数据清理和转换 我们在进行数据处理时,拿到的数据可能不符合我们的要求.有很多种情况,包括部分数据缺失,一些数据的格式不正确,一些数据的标注问题等等.对于这些数据,我们在开始分析之前必须进行必要的整理.清理. 清理和转换的过程中用到最对的包括判断是否存在空值(obj.isnull),删除空值(dropna).填充空值(fillna).大小写转换.文字替换(replace)等等.我这里挑几个典型的场景来学习一下. 判断是否存在有空…