[bzoj2301: [HAOI2011]Problem b] 乞讨】的更多相关文章

</pre><pre code_snippet_id="507886" snippet_file_name="blog_20141104_2_5383199" name="code" class="cpp">#include <iostream> #include <algorithm> #include <vector> #include <map> #…
2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit][Status][Discuss] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Outp…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:多次询问,求有多少对数满足 gcd(x,y)=k, a<=x<=b, c<=y<=d. 对于有下界的区间,容易想到用容斥原理做.然后如果直接用Mobius反演定理做,那么每次询问的复杂度是O(n/k),如果k=1的话,那么总体就是O(n^2)的复杂度了,会TLE.这样用到了分快优化,注意到 n/i ,在连续的k区间内存在,n/i=n/(i+k),因此能用分块优化…
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000 看这个:http://blog.csdn.net/a_crazy_czy/article/details/50485082 不过有一点点小错误,这里0和1反了. #include<cstdio> #include<algorithm&…
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减,类似二维前缀和.那么问题转化为在1 <= x <= lmtx, 1 <= y <= lmty时gcd(x, y) == k的对数,这个问题在转化一下,转化成1 <= x <= lmtx / k,1 <= y <= lmty / k时x与y互质的对数.莫比乌斯反…
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转载请注明出处,侵权必究,保留最终解释权! Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k O…
分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的,我们通常采用莫比乌斯反演 但是,时间复杂度是O(n*(n/k))的,当复杂度很坏的时候,当k=1时,退化到O(n^2),超时 然后进行分块优化,时间复杂度是O(n*sqrt(n)) #include<cstdio> #include<cstring> #include<queue…
属于结果的和好求但是结果不好求的题 (轻易能得到以k的倍数为最大公约数的对数,但是不好直接求k) 所以一波反演结束 其实反演的时候完全没有反演的感觉,就是不停地恒等变形 算是懵逼乌斯反演最简单的例题 #include <bits/stdc++.h> using namespace std; ],p[];]; int calc(int n,int m) { ;if(n>m) swap(n,m); ,j;i<=n;i=j+) { j=min(n/(n/i),m/(m/i)); ret+…
传送门:https://www.luogu.org/problemnew/show/P2522 题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 分析 特殊情况和POI2007 ZAP-Queries相同. 接下来的问题就是解决普遍情况,不难得到答案就是\(ans(b,d)-ans(b,c-1)-ans(a-1,d)+ans(a-1,c-1)\),这是容斥原理. 这道题目有毒,int和l…
Description 求有多少个数对 \((x,y)\) ,满足$ a \leq x \leq b$ ,\(c \leq y \leq d\) ,且 \(\gcd(x,y) = k\),\(\gcd(x,y)\)函数为 \(x\) 和 \(y\) 的最大公约数.多组询问.\(a,b,c,d,k,T \leq 50000\) Solution 莫比乌斯反演的经典题目QAQ 首相将问题转化成前缀上的问题.即需要求出 有多少个数对 \((x,y)\) ,满足$ 1 \leq x \leq a$ ,\…