题意: 有k种颜色,每种颜色对应a[i]个球,球的总数不超过1000 要求第i种颜色的最后一个球,其后面接着的必须是第i+1种颜色的球 问一共有多少种排法 Sample test(s) input output input output Note In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are: 思路:…
看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p - 1) % p = 1; -> a ^ (p - 2) % p = (1 / a) % p; 巧妙1: for(int i=1;i<=n;i++) { int temp; scanf("%d",&temp); sum1[temp]++; } for(int j=i;…
Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are labeled from 1 to k. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he…
题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友就打表找到公式了,然后我就写了一个快速幂加个费马小定理就过了去看别的题了,赛后找到了一个很不错的博客:传送门,原来这道题也可以用DP+矩阵快速幂AC.下面说下组合数学的做法: 首先一共有4^n种情况,我们减去不符合条件的情况就行了,从中取k个进行染红绿色一共C(n,k)种情况,剩下的蓝黄色一共有2^…
首先,我们珂以抽象出S函数的模型:把n拆成k个正整数,有多少种方案? 答案是C(n-1,k-1). 然后发现我们要求的是一段连续的函数值,仔细思考,并根据组合数的性质,我们珂以发现实际上答案就是在让求2^(n-1). 然鹅我们并不能高兴地过早.因为n的数量级竟然到了丧心病狂的1e100000.连高精度都救不了它. 费马小定理 费马小定理有两种形式:  $a^{p-1}$≡1($mod$ $p$)   与 $a^p$≡$a$($mod$ $p$). 第二种形式更为通用,是因为第一种形式不能涵盖“$…
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                         (全题文末) 知识点: 整数n有种和分解方法. 费马小定理:p是质数,若p不能整除a,则 a^(p-1) ≡1(mod p).可利用费马小定理降素数幂. 当m为素数,(m必须是素数才能用费马小定理) a=2时.(a=2只是题中条件,a可以为其他值) mod m =  *      //  k=…
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了.因此也很少有其他动物知道这样一个王国. 猪王国虽然不大,但是土地肥沃,屋舍俨然.如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃花源了.猪…
题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少时最少的个数,rb代表1最多时的个数.一张牌翻两次和两张牌翻一次 得到的奇偶性相同,所以结果中lb和最多的rb的奇偶性相同.如果找到了lb和rb,那么,介于这两个数之间且与这两个数奇偶性相同的数均可取到,然后在这个区间内求组合数相加(若lb=3,rb=7,则3,5,7这些情况都能取到,也就是说最后的…
题意: 给出k个球和质数p,对每个球以公式val(i)=1^i+2^i+...+(p-1)^i (mod p)计算出它的价值,然后两个人轮流拿,最后拿到的球的总价值大的获胜,问我们先手是否获胜. 我们分成两种情况讨论: 情形1:i%(p-1)==0,即i是(p-1)的倍数,由费马小定理 a^(p-1)=1(mod p),可以套入公式得该球价值为 p-1; 情形2:i不是(p-1)的倍数,这时要用到原根的性质,对于一个正整数g和质数p,若g为p的原根,可将1,2,3...p-1表示为g^1,g^2…
Problem Description During summer vacation,Alice stay at home for a long time, with nothing to do. She went out and bought m pokers, tending to play poker. But she hated the traditional gameplay. She wants to change. She puts these pokers face down,…