「学习笔记」DP 学习笔记1】的更多相关文章

棋盘 需要注意的几点: 题面编号都是从0开始的,所以第1行实际指的是中间那行 对\(2^{32}\)取模,其实就是\(unsigned\ int\),直接自然溢出啥事没有 棋子攻击范围不会旋转 首先,我们得找出所有满足条件的同一行的状态,在此之前,我们要先处理出状态\(S\)下,第\(k\)行能被棋子攻击到的格子\(at[k][S]\) 先钦定自己不能攻击自己 再枚举每一个状态中每一个1,然后对攻击范围模板进行左移/右移操作,把这一行这种状态能攻击到的格子或上他 接下来,枚举每一个状态,如果\(…
首先对于序列上一点,它对答案的贡献只有与它的前驱和后驱(前提颜色相同)构成的点对, 于是想到用set维护每个颜色,修改操作就是将2个set暴力合并(小的向大的合并),每次插入时更新答案即可 颜色数要离散化,或者用map也行 Code #include <cstdio> #include <set> #include <map> #define N 100010 using namespace std; int n,m,Ans=2147483647; map<int…
「学习笔记」平衡树基础:Splay 和 Treap 点击查看目录 目录 「学习笔记」平衡树基础:Splay 和 Treap 知识点 平衡树概述 Splay 旋转操作 Splay 操作 插入 \(x\) 查询排名为 \(k\) 的数 查询 \(x\) 的排名 查询 \(x\) 的前驱 查询 \(x\) 的后继 删除 \(x\) 代码 替罪羊树 Treap FHQ_Treap 树套树 平衡树的区间操作 例题 P3391 文艺平衡树 思路 P4036 [JSOI2008]火星人 思路 P4309 [T…
「学习笔记」Min25筛 前言 周指导今天模拟赛五分钟秒第一题,十分钟说第二题是 \(\text{Min25}​\) 筛板子题,要不是第三题出题人数据范围给错了,周指导十五分钟就 \(\text{AK}​\) 了,为了向 \(\text{AK}​\)王 学习,真诚的膜拜他,接受红太阳的指导,下午就学习了一下 \(\text{Min25}​\) 筛. 简介 如果 \(f(n)\) 是一个积性函数,且 \(f(n)\) 是一个关于 \(n\) 的简单多项式,并可以快速算出 \(f(p^k),\ p\…
目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NTT\) 在某种意义上说,应该属于 \(FFT\) 的一种优化. --因而必备知识肯定要有 \(FFT\) 啦... 如果不知道 \(FFT\) 的大佬可以走这里 引入 在 \(FFT\) 中,为了能计算单位原根 \(\omega\) ,我们使用了 \(\text{C++}\) 的 math 库中的…
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔记」FFT 快速傅里叶变换 几个星期之后,继 扩展欧拉定理 之后, \(lj\) 大佬又给我们来了一发数论... 虽然听得心态爆炸, 但是还好的是没有 \(ymx\) 大佬的飞机开得好... 至少我还没有坐飞机... 啥是 FFT 呀?它可以干什么? 首先,你需要知道 矩阵乘法 的相关知识. 通过…
「学习笔记」Treap 前言 什么是 Treap ? 二叉搜索树 (Binary Search Tree/Binary Sort Tree/BST) 基础定义 查找元素 插入元素 删除元素 查找后继 平衡性问题讨论 经典例题 堆 (Heap) 查询操作 插入操作 删除操作 随机二叉查找树 (Treap) 基础定义 Treap 维护平衡的原理--旋转操作 插入操作 删除操作 其他操作 调试技巧 前言 HuaQiMoAo 大佬 GuoShaoYang 大佬 且部分图片可能来源于这两位大佬. 本人太菜…
「学习笔记」字符串基础:Hash,KMP与Trie 点击查看目录 目录 「学习笔记」字符串基础:Hash,KMP与Trie Hash 算法 代码 KMP 算法 前置知识:\(\text{Border}\) 思路 代码 \(\text{KMP}\) 匹配 思路 代码 Trie 数据结构 01-Trie 代码 练习题 Hash Bovine Genomics 思路 代码 [TJOI2018]碱基序列 思路 代码 [CQOI2014]通配符匹配 [NOI2017] 蚯蚓排队 思路 代码 KMP See…
目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 Step 2 证明 代码 「CF 995F」Cowmpany Cowmpensation 题意简述 数据规模 Solution Step 1 Step 2 证明 代码 「CF 662F」The Sum of the k-th Powers 题意简述 数据规模 Solution 代码 「BZOJ 3…
\(\mathcal{Preface}\)   单位根反演,顾名思义就是用单位根变换一类式子的形式.有关单位根的基本概念可见我的这篇博客. \(\mathcal{Formula}\)   单位根反演的公式很简单: \[[k|n]=\frac{1}k\sum_{i=0}^{k-1}\omega_k^{ni} \] \(\mathcal{Proof}\)   分类讨论: \(k|n\). 那么 \((\forall i)(\omega_k^{ni}=1)\),所以右侧为 \(\frac{1}k\su…