4.(2021.6.24)Briefings-生物信息学中的图表示学习:趋势.方法和应用 论文标题: Graph representation learning in bioinformatics: trends, methods and applications 论文期刊: Briefings in Bioinformatics 2021 论文地址: https://www.researchgate.net/profile/Haicheng-Yi/publication/354327323_G…
6.(2021.9.14)Briefings-MPG:一种有效的自我监督框架,用于学习药物分子的全局表示以进行药物发现 论文标题:An effective self-supervised framework for learning expressive molecular global representations to drug discovery 论文期刊:Briefings in Bioinformatics 2021 论文地址:https://www.researchgate.net…
3.(2021.3.26)Bioinformatics-SumGNN:通过有效的KG聚集进行多类型DDI预测 论文标题: SumGNN: multi-typed drug interaction prediction via efficient knowledge graph summarization 论文地址: https://academic.oup.com/bioinformatics/article-pdf/37/18/2988/40471587/btab207.pdf 论文期刊: B…
2.(2021.3.15)Bioinformatics-MUFFIN:用于DDI预测的多尺度特征融合 论文标题: MUFFIN: multi-scale feature fusion for drug–drug interaction prediction 论文地址: https://www.researchgate.net/profile/Jianmin-Wang-3/publication/350100336_MUFFIN_Multi-Scale_Feature_Fusion_for_Dru…
5.(2021.7.12)Bioinformatics-KG4SL:用于人类癌症综合致死率预测的知识图神经网络 论文标题:KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers 论文地址:https://academic.oup.com/bioinformatics/article/37/Supplement_1/i418/6319703 论文期刊:Bioinformati…
MSTE: 基于多向语义关系的有效KGE用于多药副作用预测 论文标题: Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction 论文期刊: Bioinformatics 2021 MSTE: 基于多向语义关系的有效KGE用于多药副作用预测 摘要 1.引言 2.相关工作 2.1 KGE 2.2.1 基于平移的…
14.(2022.5.21)Bioinformatics-SGCL-DTI:用于DTI预测的监督图协同对比学习 论文标题: Supervised graph co-contrastive learning for drug–target interaction prediction 论文地址: https://academic.oup.com/bioinformatics/article-abstract/38/10/2847/6551245 论文期刊: Bioinformatics 2022…
论文标题:Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries 论文地址: https://arxiv.org/abs/2208.07638 论文会议: KDD 2022 17.(2022.8.16)KDD-kgTransformer:复杂逻辑查询的预训练知识图谱Transformer 17.(2022.8.16)KDD-kgTransformer:复杂逻辑查询的预训练知识图谱…
Global Gated Mixture of Second-order Pooling for Imporving Deep Convolutional Neural Network(2018 NIPS,大工李培华组) 论文motivation: (1)现存的池化:一阶GAP(全局均值池化)是很多CNN结构的标配,有研究者提出高阶池化来提高性能 (2)缺点:但是这些池化都有个缺点就是假设了样本服从了单峰分布,限制了CNN的表达能力. (3)论文的改进:于是论文提出了基于二阶池化的门混合结构来提…
SLAM架构的两篇顶会论文解析 一. 基于superpoint的词袋和图验证的鲁棒闭环检测 标题:Robust Loop Closure Detection Based on Bag of SuperPoints and Graph Verification 作者:Haosong Yue, Jinyu Miao, Yue Yu, Weihai Chen and Changyun Wen 来源:IEEE/RSJ International Conference on Intelligent Rob…