KKT (LICQ)】的更多相关文章

目录 基本内容 LICQ 假设 KKT 定理 KKT定理的证明 引理A Farkas 引理 推论 KKT定理的证明 H. E. Krogstad, TMA 4180 Optimeringsteori KARUSH-KUHN-TUCKER THEOREM KKT条件在处理有约束问题的时候很有用, 但是对KKT的适用性一直不是很理解, 看了这篇讲解整理一下. 基本内容 问题 \[\tag{1} \min_{x \in \Omega} f(x), \] 在等式约束条件: \[\tag{2} c_i(x…
    这篇博文中直观上讲解了拉格朗日乘子法和 KKT 条件,对偶问题等内容.     首先从无约束的优化问题讲起,一般就是要使一个表达式取到最小值: \[min \quad f(x)\]     如果问题是 \(max \quad f(x)\) 也可以通过取反转化为求最小值 \(min \quad-f(x)\),这个是一个习惯.对于这类问题在高中就学过怎么做.只要对它的每一个变量求导,然后让偏导为零,解方程组就行了. 极值点示意图     所以在极值点处一定满足 \(\frac {df(x)}…
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM扩展到更多的数据集上. 1.基于最大间隔分隔数据 几个概念: 1.线性可分(linearly separable):对于图6-1中的圆形点和方形点,如果很容易就可以在图中画出一条直线将两组数据点分开,就称这组数据为线性可分数据 2.分隔超平面(separating hyperplane):将数据集分…
在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件. 我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题).提到KKT条件一般会附带的提一下拉格朗日乘子.对学过高等数学的人来说比较拉格朗日乘子应该会有些印象.二者均是求解最优化问题的方法,不…
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:59:22  大家好,今天一起交流下PRML第7章.第六章核函数里提到,有一类机器学习算法,不是对参数做点估计或求其分布,而是保留训练样本,在预测阶段,计算待预测样本跟训练样本的相似性来做预测,例如KNN方法. 将线性模型转换成对偶形式,就可以利用核函数来计算相似性,同时避免了直接做高维度的向量内积运算.本章是稀疏向量机,同样基于核函数,用训练样本直接对新样本做预测,而且只使用了少量训练样本,所以具有稀疏性,叫sp…
解密SVM系列(一):关于拉格朗日乘子法和KKT条件 标签: svm算法支持向量机 2015-08-17 18:53 1214人阅读 评论(0) 收藏 举报  分类: 模式识别&机器学习(42)  版权声明:本文为博主原创文章,未经博主允许不得转载.   原文链接 :http://blog.csdn.net/on2way/article/details/47729419 写在之前 支持向量机(SVM),一个神秘而众知的名字,在其出来就受到了莫大的追捧,号称最优秀的分类算法之一,以其简单的理论构造…
[整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件. 我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题).提到KKT条件一般会附带的提一下拉格朗日乘子.对学过高等数学的人来说比较拉格朗日乘子应该会有些印象.二者均是求解最优化…
拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件.前提是:只有当目标函数为凸函数时,使用这两种方法才保证求得的是最优解. 对于无约束最优化问题,有很多经典的求解方法,参见无约束最优化方法. 拉格朗日乘子法 先来看拉格朗日乘子法是什么,再讲为什么. $\min\;f(x)\\s.t.\;h_{i}(x)=0\;\;\;\;i=1,2...,n$ 这…
作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助.本文分为两个部分:第一部分是数学上的定义以及公式上的推导:第二部分主要是一些常用方法的直观解释.初学者可以先看第二部分,但是第二部分会用到第一部分中的一些结论.请读者自行选择. 拉格朗日乘子法的数学基础 共轭函数 对于一个函数f:Rn→R(不要求是凸函数),我们可以定义它的共轭函数f⋆:Rn→R为:…
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式约束,可以应用KKT条件去求取.当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件.KKT条件是拉格朗日乘子法的泛化.之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么…