Flink中的算子操作】的更多相关文章

一.Connect DataStream,DataStream ->  ConnectedStream,连接两个保持他们类型的数据流,两个数据流被Connect之后,只是被放在了同一个流中,内部依然保持各自的数据和形式 不发生任何变化,两个流相互独立. import org.apache.flink.streaming.api.scala._ object Connect { def main(args: Array[String]): Unit = { val env = StreamExec…
摘自Apache Flink官网 最早的streaming 架构是storm的lambda架构 分为三个layer batch layer serving layer speed layer 一.在streaming中Flink支持的通知时间 Flink官网写了个了解streaming和各种时间的博客 https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101#F2 1.Processing time:执行时候的机器系统时…
1.State概念理解 在Flink中,按照基本类型,对State做了以下两类的划分:Keyed State, Operator State. Keyed State:和Key有关的状态类型,它只能被基于KeyedStream之上的操作,方法所使用.我们可以从逻辑上理解这种状态是一个并行度操作实例和一种Key的对应, <parallel-operator-instance, key>.Operator State:(或者non-keyed state),它是和Key无关的一种状态类型.相应地我…
Flink Window机制范例实录: 什么是Window?有哪些用途? 1.window又可以分为基于时间(Time-based)的window 2.基于数量(Count-based)的window. Flink DataStream API提供了Time和Count的window,同时增加了基于Session的window. 同时,由于某些特殊的需要,DataStream API也提供了定制化的window操作,供用户自定义window. 下面,主要介绍Time-Based window以及…
本文根据 Apache Flink 系列直播课程整理而成,由 Apache Flink PMC,阿里巴巴高级技术专家 孙金城 分享.重点为大家介绍 Flink Python API 的现状及未来规划,主要内容包括:Apache Flink Python API 的前世今生和未来发展:Apache Flink Python API 架构及开发环境搭建:Apache Flink Python API 核心算子介绍及应用. 一.Apache Flink Python API 的前世今生和未来发展 1.…
1 前言 在时间 Time 那一篇中,介绍了三种时间概念 Event.Ingestin 和 Process, 其中还简单介绍了乱序 Event Time 事件和它的解决方案 Watermark 水位线 (看过多篇文章后,决定喊它水位线,因为窗口触发条件是 Watermark > Window_end_time,有点像水流到达水位线后溢出,当然喊它水印也是可以的,全看个人爱好咯~) 前文请翻 时间 Time 和 Watermark,不过前面介绍比较浅,没能很好领会水位线的概念,所以本篇是作为补充,…
一.Flink中的window 1,window简述  window 是一种切割无限数据为有限块进行处理的手段.Window 是无限数据流处理的核心,Window 将一个无限的 stream 拆分成有限大小的”buckets”桶,我们可以在这些桶上做计算操作. 2,window类型 window可分为CountWindow和TimeWindow两类:CountWindow:按照指定的数据条数生成一个 Window,与时间无关:TimeWindow:按照时间生成 Window. a)滚动窗口 将数…
前言 Flink 是流式的.实时的 计算引擎 上面一句话就有两个概念,一个是流式,一个是实时. 流式:就是数据源源不断的流进来,也就是数据没有边界,但是我们计算的时候必须在一个有边界的范围内进行,所以这里面就有一个问题,边界怎么确定? 无非就两种方式,根据时间段或者数据量进行确定,根据时间段就是每隔多长时间就划分一个边界,根据数据量就是每来多少条数据划分一个边界,Flink 中就是这么划分边界的,本文会详细讲解. 实时:就是数据发送过来之后立马就进行相关的计算,然后将结果输出.这里的计算有两种:…
1.概念 Task(任务):Task是一个阶段多个功能相同的subTask 的集合,类似于Spark中的TaskSet. subTask(子任务):subTask是Flink中任务最小执行单元,是一个Java类的实例,这个Java类中有属性和方法,完成具体的计算逻辑. Operator Chains(算子链):没有shuffle的多个算子合并在一个subTask中,类似于Spark 中的Pipeline. Slot(插槽):Flink 中计算资源进行隔离的单元,一个Slot中可以运行多个subT…
1.简介 Flink的特点是高吞吐低延迟.但是Flink中的某环节的数据处理逻辑需要和外部系统交互,调用耗时不可控会显著降低集群性能.这时候就可能需要使用异步算子让耗时操作不需要等待结果返回就可以继续下面的耗时操作. 2.本章可以了解到啥 异步算子源码分析 异步算子为啥能够保证有序性 flinksql中怎么自定义使用异步lookup join 3.异步算子的测试代码 import java.io.Serializable; import java.util.concurrent.Completa…