Introduction 这篇文章设计了一种自监督网络框架,能够同时提取特征点的位置以及描述子.相比于patch-based方法,本文提出的算法能够在原始图像提取到像素级精度的特征点的位置及其描述子.本文提出了一种单映性适应(Homographic Adaptation)的策略以增强特征点的复检率以及跨域的实用性(这里跨域指的是synthetic-to-real的能力,网络模型在虚拟数据集上训练完成,同样也可以在真实场景下表现优异的能力). SuperPoint Architecture 1 S…
相关工作: 将R-CNN推广到RGB-D图像,引入一种新的编码方式来捕获图像中像素的地心姿态,并且这种新的编码方式比单纯使用深度通道有了明显的改进. 我们建议在每个像素上用三个通道编码深度图像:水平视差.离地高度.像素局部表面法向量和重力方向的夹角(HHA,horizontal disparity, height above ground, and the angle the pixel`s, local surface normal makes with the inferred gravit…
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40th Annual Computer Software and Applications Conference) 单位: Nagoya University(名古屋大学).NTT Secure Platform Laboratories(NTT安全平台实验室) 方法概述 数据:81个恶意软件日志文件…
好久不写论文笔记了,不是没看,而是很少看到好的或者说值得记的了,今天被xinlei这篇paper炸了出来,这篇被据老大说xinlei自称idea of the year,所以看的时候还是很认真的,然后最后确实也发现了不少干货. 一.introduction 这篇文章主要还是解决detection中如何有效的利用context信息的问题,这里作者提出了有两种context信息:1.image-level的信息,也就是当前场景的信息,例如一张床出现在卧室里面,一个篮球出现在篮球场里面,都是极其合理的…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "…
[原创]Liu_LongPo 转载请注明出处 [CSDN]http://blog.csdn.net/llp1992 近期在关注 crowd scene方面的东西.由于某些原因须要在crowd scene上实现 anomaly detection.所以看到了这篇论文,该论文是眼下在crowd scene中进行abnormal detection做的最好的,记录下笔记当做学习资料. 传统的 anomaly detection中,非常多突发事件监測都是基于motion information的,这样就…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #042eee } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px "…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "…
在上计算机视觉这门课的时候,老师曾经留过一个作业:识别一张 A4 纸上的手写数字.按照传统的做法,这种手写体或者验证码识别的项目,都是按照定位+分割+识别的套路.但凡上网搜一下,就能找到一堆识别的教程,分割的文章次之,而定位的文章就少之又少了.这其中的缘由也很简单:识别目前来说已经不是什么难事了,所以容易写,但分割和定位却仍然是一个头疼不已的问题,不同场景方法不同,甚至同一场景也要结合多种图像处理方法,因此很难有通用的解决策略.在深度学习火起来之后,很多研究人员开始尝试用深度学习的特征提取能力来…
Learning Cross-Modal Deep Representations for Robust Pedestrian Detection 2017-04-11  19:40:22  Motivation: 本文主要是考虑了在光照极端恶劣的情况下,如何充分的利用 thermal data 进行协助学习提升 可见光图像的 特征表达能力,而借鉴了 ICCV 2015 年的一个文章,称为:监督迁移的方法,以一种模态的特征为 label,以监督学习的方式实现无监督学习.说到这里可能比较让人糊涂,…