\(\mathscr{Summary}\)   和出题人很有缘分但是没有珍惜.jpg   A 题有一个显然的二维偏序斜率式,以及显然的 CDQ 套李超树 \(\mathcal O(n\log^2n)\) 做法,写出来跑的飞快就不管了,算是签到.   B 题,大家的正解做法和标算的做法我都想过,越写越萎最后成了暴力 qwq.   C 题我只能躬逢胜饯了,至少写了暴力.( \(\mathscr{Solution}\) \(\mathscr{A}-\) Array   给定序列 \(\{a_n\}\)…
\(\mathscr{Summary}\)   读错题了读错题了 B 题差点没做出来真的太吓人了.   逆序开题,C 题直接冲一发暴力最大权闭合子图居然过了.A 题确实一下子没想到用"可能的函数集合"描述状态,所以直接摆烂.B 题感觉是个没见过的 trick 啊,但现推还是比较容易,本来把"跳到一个后代"理解成"跳到一个儿子",冲出树剖调半天发现读错题,我直接 .还好树剖那一大坨都是对的,只是初始的 SG 得重算(怎么还变简单了啊喂).总之就是这…
\(\mathscr{Summary}\)   名副其实的 trash round,希望以后没有了.   A 题算好,确实一个比较关键的简化状态的点没想到,所以只拿了暴力(不考虑 \(\mathcal O(n^4)\) 能操过更多分的情况,明明 \(\mathcal O(n^4)\) 和 \(\mathcal O(2^n)\) 是一档的.)   B 题签到,C 题倍增 + 分治 NTT 你开 \(10^6\) 我确实 ,要不是 \(10^5\) 分多我甚至懒得写. \(\mathscr{Solu…
\(\mathscr{Summary}\)   有一说一,虽然我炸了,但这场锻炼心态的效果真的好.部分分聊胜于无,区分度一题制胜,可谓针对性强的好题.   A 题,相对性签到题.这个建图确实巧妙,多见见就好.   B 题,小常数暴力卡常,证了复杂度就是正解,这--   C 题,写了个伪解 ha 了差不多一个小时才 ck 掉,浪费了很多时间,策略问题啊. \(\mathscr{Solution}\) \(\mathscr{A}-\) 一般图带权多重匹配   给定 \(\{a_n\}\),\(\{c…
\(\mathscr{Summary}\)   省选几个小时啊,怎么模拟赛只打三个小时啊./kk   时间安排较为合理,没有出现严重的因思考时间过少引起的丢分.   A 题比较可惜,二分 + 点分治大概想了一下就叉掉了,再后来就没再想起二分.骗分的时候 Manacher 又写假了,笑死,字符一定要调整成 ^|a|a|a|a| 的形式,前后的 | 都不能少.   B 题要是出在所谓"Burnside 算法练习题"里,估计还有挣扎的余地,Burnside 相关的东西确实不熟悉,依靠并不扎实…
\(\mathcal{Description}\)   一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数.   \(L\le10^{12}\),\(1\le a,b\le10^5\). \(\mathcal{Solution}\) \(\mathcal{Case~1}\)   考场上玄学操作,天知道为什么兔子签到的姿势如此诡异.   显然先约 \(\gcd\).我们从 \(0\) 次开始枚举 \(-b\…
\(\mathcal{Description}\)   OurTeam.   给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全部连通.   \(n\le32000\). \(\mathcal{Solution}\)   考虑用中位数的标准姿势统计每条边的贡献--小于它的设为 \(-1\),大于它的设为 \(+1\),边权相等按编钦定大小关系.那么这条边的贡献就是路径两端权值加和为 \(0\) 的路径对数(显然每对路径连起来…
\(\mathcal{Description}\)   给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\land(\forall i\in(1,n])(a_{i-1}\le a_i)\land\left(\sum_{i=1}^na_i10^{n-i}\bmod p=0\right)\),对 \(998244353\) 取模.   \(n\le10^{18}\),\(m\le50\),\(p\le200\…
\(\mathcal{Description}\)   OurOJ.   给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{and},\operatorname{or},\operatorname{xor}\}\),对于 \(i\in[2,n]\),求出 \(\max_{j\in[1,i)}\{a_i\operatorname{op} a_j\}\) 以及 \(|\arg\max_{j\in[1,i)}\{a_i\ope…
\(\mathcal{Description}\)   OurTeam & OurOJ.   给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) 的简单有向路径上的字符串成括号序列,记其正则匹配的子串个数为 \(\operatorname{ans}(u,v)\).求: \[\sum_{u=1}^n\sum_{v=1}^n\operatorname{ans}(u,v)\bmod998244353 \]   \(n\le2\times10^5\). \(…