<题目链接> 题目大意: 一个由小写字母组成的字符串,给出字符的种类,以及字符串的长度,再给出添加每个字符和删除每个字符的代价,问你要使这个字符串变成回文串的最小代价. 解题分析: 一道区间DP的好题.因为本题字符串的长度最大为2e3,所以考虑$O(n^2)$直接枚举区间的两个端点,然后对枚举的区间进行状态转移,大体上有三种转移情况: $dp[l][r]$表示$[l,r]$为回文串的最小代价 对于区间$[l,r]$,当$str[l]==str[r]$时,$dp[l][r]=dp[l+1][r-…
题意 : 给出一个由 n 中字母组成的长度为 m 的串,给出 n 种字母添加和删除花费的代价,求让给出的串变成回文串的代价. 分析 :  原始模型 ==> 题意和本题差不多,有添和删但是并无代价之分,要求最少操作几次才能是其变成回文串 ① 其实细想之后就会发现如果没有代价之分的话删除和增添其实是一样的,那么除了原串原本拥有的最长回文串不用进行考虑处理,其他都需要进行删除或者增添来使得原串变成回文串,所以只要对原串 S 和其反向串 S' 找出两者的最长公共子串长度 L 再用总长减去 L 即可 ②…
题目链接:http://poj.org/problem?id=3280 Time Limit: 2000MS Memory Limit: 65536K Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that th…
题目链接:http://poj.org/problem?id=3280 题目大意:给定一个字符串,可以删除增加,每个操作都有代价,求出将字符串转换成回文串的最小代价 Sample Input 3 4 abcb a 1000 1100 b 350 700 c 200 800 Sample Output 900 分析:这是一道最长回文串的变形,就是LCS 一串字符要变成回文,对于一个字符来说,删掉它,或者增加对称的一个该字符,都能达到回文的效果,所以是等价的.所以取代价的的时候选择最小的就可以. 至…
 Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents…
Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are…
题意:对一个字符串进行插入删除等操作使其变成一个回文串,但是对于每个字符的操作消耗是不同的.求最小消耗. 思路: 我们定义dp [ i ] [ j ] 为区间 i 到 j 变成回文的最小代价.那么对于dp[i][j]有三种情况首先:对于一个串如果s[i]==s[j],那么dp[i][j]=dp[i+1][j-1]其次:如果dp[i+1][j]是回文串,那么dp[i][j]=dp[i+1][j]+min(add[i],del[i]):最后,如果dp[i][j-1]是回文串,那么dp[i][j]=d…
题目链接 题意 :给你一个字符串,让你删除或添加某些字母让这个字符串变成回文串,删除或添加某个字母要付出相应的代价,问你变成回文所需要的最小的代价是多少. 思路 :DP[i][j]代表的是 i 到 j 这一段位置变成回文所需的最小的代价. #include <stdio.h> #include <string.h> #include <iostream> using namespace std ; ] ; ] ; ][] ; int main() { int M,N ;…
观察题目我们可以知道,实际上对于一个字母,你在串中删除或者添加本质上一样的,因为既然你添加是为了让其对称,说明有一个孤立的字母没有配对的,也就可以删掉,也能满足对称. 故两种操作看成一种,只需要保留花费少的那个即可 然后 令 dp[i][j]表示从位置i到j的子串转化为回文串需要的次数 若 s[i]== s[j] 则dp[i][j] = dp[i + 1][j - 1] 否则 dp[i][j] = min(dp[i+1][j] + cost[i], dp[i][j - 1] + cost[j])…
题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思路:比较简单的区间DP,令dp[i][j]表示使[i,j]回文的最小花费.则得到状态转移方程: dp[i][j]=min(dp[i][j],min(add[str[i]-'a'],del[str[i]-'a'])+dp[i+1][j]); dp[i][j]=min(dp[i][j],min(add[…