郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1812.06127v3 [cs.LG] 11 Jul 2019 目录: Abstract 1 Introduction 2 Related Work 3 Federated Optimization: Algorithms 3.1 Federated Averaging (FedAvg) 3.2 Proposed Framework: FedProx 4 FedProx: Convergence Analysis 4.1…
R. Amiri, M. A. Almasi, J. G. Andrews and H. Mehrpouyan, "Reinforcement Learning for Self Organization and Power Control of Two-Tier Heterogeneous Networks," in IEEE Transactions on Wireless Communications, vol. 18, no. 8, pp. 3933-3947, Aug. 20…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1610.02527v1 [cs.LG] 8 Oct 2016 坐标下降法:https://blog.csdn.net/qq_32742009/article/details/81735274 Abstract 我们为机器学习中的分布式优化引入了一个越来越相关的新设置,其中规定优化的数据在极大量的节点上分布不均匀.我们的目标是训练一个高质量的集中式模型.我们将此设置称为联邦优化.在这种情况下,通信效率至关重要,最大限度地减…
[论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 解决异构网络上的节点嵌入问题. 论文中指出了异构网络嵌入的两个关键问题: 在异构网络中,如何定义和建模节点邻域的概念? 如何优化嵌入模型,使得其能够有效的保留多种类型的节点和边的结构和语义信息. (2) 主要贡献 Contribution 1: 定义了异构网络表示学…
目录 引 主要内容 定理1 Claim 1 Claim 2 定理2 证明 定理1的证明 Claim 1 的证明 Kronecker product (克罗内克积) Theorem 2 的证明 代码 Arora S, Cohen N, Hazan E, et al. On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization[J]. arXiv: Learning, 2018. 引 我很喜欢…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. arXiv: 1910.06837v1 [cs.CR] 14 Oct 2019 Abstract 联邦学习是一种很有前途的机器学习方法,它利用来自多个节点(如移动设备)的分布式个性化数据集来提高性能,同时为移动用户提供隐私保护.在联邦学习中,训练数据广泛分布在移动设备上,作为用户得到维护.中央聚合方通过使用移动设备的本地训练数据从移动设备收集本地更新来更新全局模型,以在每次迭代中训练全…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated Machine Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol. 10, 2, Article 12 (February 2019), 19 pages. https://doi.org/0000001.0…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale, Florida, USA. JMLR: W&CP volume 54. Copyright 2017 by the author(s). Abstract 现代移动设备可以访问大量适合模型学…
Stochastic Optimization Techniques Neural networks are often trained stochastically, i.e. using a method where the objective function changes at each iteration. This stochastic variation is due to the model being trained on different data during each…
Rupesh Kumar Srivastava (邮箱:RUPESH@IDSIA.CH)Klaus Greff (邮箱:KLAUS@IDSIA.CH)J¨ urgen Schmidhuber (邮箱:JUERGEN@IDSIA.CH)The Swiss AI Lab IDSIA(瑞士AI实验室IDSIA)Istituto Dalle Molle di Studi sull’Intelligenza Artificiale(IDSIA:institute of studies on intellig…