郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. arXiv: 1910.06837v1 [cs.CR] 14 Oct 2019 Abstract 联邦学习是一种很有前途的机器学习方法,它利用来自多个节点(如移动设备)的分布式个性化数据集来提高性能,同时为移动用户提供隐私保护.在联邦学习中,训练数据广泛分布在移动设备上,作为用户得到维护.中央聚合方通过使用移动设备的本地训练数据从移动设备收集本地更新来更新全局模型,以在每次迭代中训练全…