拉格朗日乘子法与KKT条件】的更多相关文章

参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原始问题变为对偶问题来求解 1. 首先是我们有不等式约束方程,这就需要我们写成min max的形式来得到最优解.而这种写成这种形式对x不能求导,所以我们需要转换成max min的形式,这时候,x就在里面了,这样就能对x求导了.而为了满足这种对偶变换成立,就需要满足KKT条件(KKT条件是原问题与对偶问…
关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件   目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉格朗日对偶问题 如何显式的表述拉格朗日对偶问题 由定义消去下确界 隐式求解约束 共轭函数法 弱对偶 强对偶 原始问题与对偶问题的关系 最优条件 互补松弛条件 KKT条件 一般问题的KKT条件 凸问题的KKT条件 KKT条件的用途 拉格朗日乘数法的形象化解读 等式约束的拉格朗日乘子法 含有不等约束的情…
目录 1 将有约束问题转化为无约束问题 1.1 拉格朗日法 1.1.1 KKT条件 1.1.2 拉格朗日法更新方程 1.1.3 凸优化问题下的拉格朗日法 1.2 罚函数法 2 对梯度算法进行修改,使其运用在有约束条件下 2.1 投影法 2.1.1 梯度下降法 to 投影梯度法 2.1.2 正交投影算子 References 相关博客 梯度下降法.最速下降法.牛顿法等迭代求解方法,都是在无约束的条件下使用的,而在有约束的问题中,直接使用这些梯度方法会有问题,如更新后的值不满足约束条件. 那么问题来…
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM扩展到更多的数据集上. 1.基于最大间隔分隔数据 几个概念: 1.线性可分(linearly separable):对于图6-1中的圆形点和方形点,如果很容易就可以在图中画出一条直线将两组数据点分开,就称这组数据为线性可分数据 2.分隔超平面(separating hyperplane):将数据集分…
作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助.本文分为两个部分:第一部分是数学上的定义以及公式上的推导:第二部分主要是一些常用方法的直观解释.初学者可以先看第二部分,但是第二部分会用到第一部分中的一些结论.请读者自行选择. 拉格朗日乘子法的数学基础 共轭函数 对于一个函数f:Rn→R(不要求是凸函数),我们可以定义它的共轭函数f⋆:Rn→R为:…
引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT 约束条件下应用拉格朗日乘子法求解.拉格朗日求得的并不一定是最优解,只有在凸优化的情况下,才能保证得到的是最优解,所以本文称拉格朗日乘子法得到的为可行解,其实就是局部极小值,接下来从无约束优化开始一一讲解. 无约束优化 首先考虑一个不带任何约束的优化问题,对于变量 $ x \in \mathbb{R}…
参考:知乎回答 - 通过山头形象描述 参考:马同学 - 如何理解拉格朗日乘子法? 参考: 马同学 - 如何理解拉格朗日乘子法和KKT条件? 参考:拉格朗日乘数 - Wikipedia 自己总结的规律 梯度为0, 其实就是说明里面每一个参数的偏导数都为0. 拉格朗日乘子法是对于等式约束. KKT条件是针对不等式约束条件. 拉格朗日乘子法结论 如果有个约束等式: 只需解如下方程组: KKT条件 求如下的极值: 通过解下面这个方程组来得到答案: 这个方程组也就是所谓的KKT条件. 进一步解释下方程组的…
拉格朗日乘子法是一种优化算法,主要用来解决约束优化问题.他的主要思想是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有n+k个变量的无约束优化问题. 其中,利用拉格朗日乘子法主要解决的问题为: 等式的约束条件和不等式的条件约束. 拉格朗日乘子的背后的数学意义是其为约束方程梯度线性组合中每个向量的系数. 等约束条件的解决方法不在赘述. 对于非等约束条件的求解,需要满足KKT条件才能进行求解.下面对于KKT条件进行分析. 不等式约束优化问题: 得到拉格朗日乘子法的求解方程:…
拉格朗日乘子法 \[min \quad f = 2x_1^2+3x_2^2+7x_3^2 \\s.t. \quad 2x_1+x_2 = 1 \\ \quad \quad \quad 2x_2+3x_3 = 2 \] \[min \quad f = 2x_1^2+3x_2^2+7x_3^2 +\alpha _1(2x_1+x_2- 1)+\alpha _2(2x_2+3x_3 - 2) \] \[\dfrac{\partial f}{\partial x_1}=4x_1+2\alpha_1=0\…
1 前言 拉格朗日乘子法(Lagrange Multiplier)  和 KKT(Karush-Kuhn-Tucker)  条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 KKT 条件.当然,这两个方法求得的结果只是必要条件,只有当目标函数是凸函数的情况下,才能保证是充分必要条件. 1.1 最优化问题三种约束条件 1:无约束条件 解决方法通常是函数对变量求导,令导函数等于0的点可能是极值点,将结果带回原函数进行验证. 2:等式约束条件 设目标函数为 $f(…