数据挖掘-逻辑Logistic回归】的更多相关文章

逻辑回归的基本过程:a建立回归或者分类模型--->b 建立代价函数 ---> c 优化方法迭代求出最优的模型参数  --->d 验证求解模型的好坏. 1.逻辑回归模型: 逻辑回归(Logistic Regression):既可以看做是回归算法,也可以看做是分类算法.通常作为分类算法,一般用于解决二分类问题. 线性回归模型如下:​ 逻辑回归思想是基于线性回归(Logistic  Regression是广义的线性回归模型),公式如下: ​ 其中,​ 称为Sigmoid函数 ​ 由图可知:Si…
本文介绍logistic回归,和改进算法随机logistic回归,及一个病马是否可以治愈的案例.例子中涉及了数据清洗工作,缺失值的处理. 一 引言 1 sigmoid函数,这个非线性函数十分重要,f(z) = 1 / (1 + e^(-z) ), 画图如下:…
目录 Logistic 回归 本章内容 回归算法 Logistic 回归的一般过程 Logistic的优缺点 基于 Logistic 回归和 Sigmoid 函数的分类 Sigmoid 函数 Logistic 回归分类器 图5-1 两种坐标尺度下的 Sigmoid 函数图 基于最优化方法的最佳回归系数确定 梯度上升法 图5-2 梯度上升图 梯度下降算法 训练算法:使用梯度上升找到最佳参数 图5-3 数据集图 梯度上升算法的伪代码 程序5-1 Logistic 回归梯度上升优化算法 分析数据:画出…
原文地址:http://www.bugingcode.com/machine_learning/ex3.html 关于机器学习的教程确实是太多了,处于这种变革的时代,出去不说点机器学习的东西,都觉得自己落伍了,但总觉得网上的东西并不系统,无法让人串联在一起,总有很多人读了几篇机器学习的东西,就自以为机器学习就那些东西,认为机器学习也就那么一回事,想把这几年关于机器学习的东西做一些总结,能够跟大家一起学习和交流. 如果需要用几句话来简单的总结机器学习是什么意思,也许可以用:让机器学会决策.对比我们…
原文地址:http://www.bugingcode.com/machine_learning/ex7.html 把所有的问题都转换为程序问题,可以通过程序来就问题进行求解了. 这里的模拟问题来之于Coursera 上 Andrew 的机器学习课程,问题是根据学生的两次考试成绩判断该学生是否会被录取. 数据在 这里 数据格式如下: ... 79.0327360507101,75.3443764369103,1 45.08327747668339,56.3163717815305,0 61.106…
一.Logistic回归 Logistic回归(Logistic Regression,简称LR)是一种常用的处理二类分类问题的模型. 在二类分类问题中,把因变量y可能属于的两个类分别称为负类和正类,则因变量y∈{0, 1},其中0表示负类,1表示正类.线性回归的输出值在负无穷到正无穷的范围上,不太好解决这个问题.于是我们引入非线性变换,把线性回归的输出值压缩到(0, 1)之间,那就成了Logistic回归,使得≥0.5时,预测y=1,而当<0.5时,预测y=0.Logistic回归的名字中尽管…
前言            以下内容是个人学习之后的感悟,转载请注明出处~ 逻辑回归 一.为什么使用logistic回归   一般来说,回归不用在分类问题上,因为回归是连续型模型,而且受噪声影响比较大. Why?  为什么回归一般不用在分类上?其实,很多初学者都会提出这个问题.然而,文字的解释往往不能说服我们,接下来 用图示的方式为大家讲解. 以最简单的分类为例,当y≥0.5时,输出“1”:当y<0.5时,输出“0”.下面左图,数据样本较好,线性回归模型在y=0.5处的橘色分界线 刚好在“0”.…
数据挖掘算法学习笔记汇总 数据挖掘算法(一)–K近邻算法 (KNN) 数据挖掘算法(二)–决策树 数据挖掘算法(三)–logistic回归 在介绍logistic回归之前先复习几个基础知识点,有助于后面的理解. 基本数学知识点 1.对数似然函数 若总体X为离散型,其概率分布列为 P(X=x)=p(x,θ) 其中θ为未知参数.设 (X1,X2,...,Xn) 是取自总体样本容量为n的样本,则(X1,X2,...,Xn)的联合概率分布率为 ∏i=1np(xi,θ) 又设(X1,X2,...,Xn)的…
第5章 Logistic回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=default"></script> Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 Sigmoid 函数 回…
常见算法(logistic回归,随机森林,GBDT和xgboost) 9.25r早上面网易数据挖掘工程师岗位,第一次面数据挖掘的岗位,只想着能够去多准备一些,体验面这个岗位的感觉,虽然最好心有不甘告终,不过继续加油. 不过总的来看,面试前有准备永远比你没有准备要强好几倍. 因为面试过程看重的不仅是你的实习经历多久怎样,更多的是看重你对基础知识的掌握(即学习能力和逻辑),实际项目中解决问题的能力(做了什么贡献). 先提一下奥卡姆剃刀:给定两个具有相同泛化误差的模型,较简单的模型比较复杂的模型更可取…
Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. LR 正则化 3.1 L1 正则化 3.2 L2 正则化 3.3 L1正则化和L2正则化的区别 4. RL 损失函数求解 4.1 基于对数似然损失函数 4.2 基于极大似然估计 二. 梯度下降法 1. 梯度 2. 梯度下降的直观解释 3. 梯度下降的详细算法 3.1 梯度下降法的代数方式描述 3.2…
原文地址:https://www.cnblogs.com/zichun-zeng/p/3824745.html 1. logistic回归与一般线性回归模型的区别: (1)     线性回归的结果变量 与因变量或者反应变量与自变量之间的关系假设是线性的,而logistic回归中 两者之间的关系是非线性的: (2)     前提假设不同,在线性回归中,通常假设,对于自变量x的某个值,因变量Y的观测值服从正态分布,但在logistic回归中,因变量Y 服从二项分布或者多项分布: (3)     lo…
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里的循环神经网络,无奈理论太艰深,只能从头开始开始慢慢看,因此产生写一个项目的想法,把机器学习和深度学习里关于分类的算法整理一下,按照原理写一些demo,方便自己也方便其他人.项目地址:https://github.com/LiuRoy/classfication_demo,目前实现了逻辑回归和神经网…
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概…
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的…
本文申明:本系列笔记全部为原创内容,如有转载请申明原地址出处.谢谢 序言:what is logistic regression? Logistics 一词表示adj.逻辑的;[军]后勤学的n.[逻]数理逻辑;符号逻辑;[军]后勤学, “回归”是由英国著名生物学家兼统计学家高尔顿在研究人类遗传问题时提出来的.为了研究父代与子代身高的关系,高尔顿搜集了1078对父亲及其儿子的身高数据.他发现这些数据的散点图大致呈直线状态,也就是说,总的趋势是父亲的身高增加时,儿子的身高也倾向于增加.但是,高尔顿对…
(手机的颜色,大小,用户体验来加权统计总体的值)极大似然估计MLE 1.Logistic回归 Logistic regression (逻辑回归),是一种分类方法,用于二分类问题(即输出只有两种).如用于广告预测,也就是根据某广告被用户点击的可能性,把最可能被用户点击的广告摆在用户能看到的地方,结果是用户要么点击要么不点击. 通常两类使用类别标号0和1表示,0表示不发生,1表示发生. 问题引入 例如:有100个手机,其中有30个是你喜欢的,70个是不喜欢的.现预测你对第101个手机的喜好.这是一…
回归分析是研究变量之间定量关系的一种统计学方法,具有广泛的应用. Logistic回归模型 线性回归 先从线性回归模型开始,线性回归是最基本的回归模型,它使用线性函数描述两个变量之间的关系,将连续或离散的自变量映射到连续的实数域. 模型数学形式: 引入损失函数(loss function,也称为错误函数)描述模型拟合程度: 使J(w)最小,求解优化问题得到最佳参数. Logistic回归 logistic回归(Logistic regression 或 logit regression)有时也被…
一.模型简介 线性回归默认因变量为连续变量,而实际分析中,有时候会遇到因变量为分类变量的情况,例如阴性阳性.性别.血型等.此时如果还使用前面介绍的线性回归模型进行拟合的话,会出现问题,以二分类变量为例,因变量只能取0或1,但是拟合出的结果却无法保证只有这两个值. 那么使用概率的概念来进行拟合是否可以呢?答案也是否定的,因为1.因变量的概率和自变量之间的关系不是线性的,通常呈S型曲线,并且这种曲线是无法通过曲线直线化进行处理的.2.概率的取值应该在0-1之间,但是线性拟合的结果范围是整个实数集,并…
判断学习速率是否合适?每步都下降即可.这篇先不整理吧... 这节学习的是逻辑回归(Logistic Regression),也算进入了比较正统的机器学习算法.啥叫正统呢?我概念里面机器学习算法一般是这样一个步骤: 1)对于一个问题,我们用数学语言来描述它,然后建立一个模型,例如回归模型或者分类模型等来描述这个问题: 2)通过最大似然.最大后验概率或者最小化分类误差等等建立模型的代价函数,也就是一个最优化问题.找到最优化问题的解,也就是能拟合我们的数据的最好的模型参数: 3)然后我们需要求解这个代…
原文:http://blog.csdn.net/dongtingzhizi/article/details/15962797  Logistic回归总结 作者:洞庭之子 微博:洞庭之子-Bing (2013年11月) PDF下载地址:http://download.csdn.net/detail/lewsn2008/6547463 1.引言 看了Stanford的Andrew Ng老师的机器学习公开课中关于Logistic Regression的讲解,然后又看了<机器学习实战>中的Logist…
机器学习(4)之Logistic回归 1. 算法推导 与之前学过的梯度下降等不同,Logistic回归是一类分类问题,而前者是回归问题.回归问题中,尝试预测的变量y是连续的变量,而在分类问题中,y是一组离散的,比如y只能取{0,1}. 假设一组样本为这样如图所示,如果需要用线性回归来拟合这些样本,匹配效果会很不好.对于这种y值只有{0,1}这种情况的,可以使用分类方法进行. 假设,且使得 其中定义Logistic函数(又名sigmoid函数): 下图是Logistic函数g(z)的分布曲线,当z…
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模型(忘记了为什么看完<统计学习方法>第一章之后直接就跳去了第六章,好像是对"逻辑斯蒂"这个名字很感兴趣?...),对照<机器学习实战>写了几行代码敲了一个toy版本,当时觉得还是挺有意思的.我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开…
0.鸢尾花数据集 鸢尾花数据集作为入门经典数据集.Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性.可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类. 在三个类别中,其中有一个类别和其他两个类别是线性可分的.另外.在sklearn中已内置了此数据集…
Logistic回归模型 1. 模型简介: 线性回归往往并不能很好地解决分类问题,所以我们引出Logistic回归算法,算法的输出值或者说预测值一直介于0和1,虽然算法的名字有“回归”二字,但实际上Logistic回归是一种分类算法(classification y = 0 or 1). Logistic回归模型: 课堂记录(函数图像): 函数h(x)的输出值,我们把它看做,对于一个输入值x,y = 1的概率估计.比如说肿瘤分类的例子,我们有一个特征向量x,似的h(x)的输出为0.7,我们的假设…
感知机.logistic回归 损失函数对比探讨 感知机 假如数据集是线性可分的,感知机学习的目标是求得一个能够将正负样本完全分开的分隔超平面 \(wx+b=0\) .其学习策略为,定义(经验)损失函数并将损失函数最小化.通常,定义损失函数的策略是:==误分类点到分隔超平面的总距离==.[李航,2.2节] 如果没有误分点,则损失函数值是0. 感知机学习算法若采用不用的初始值或选取不同的误分类点,得到的分隔超平面可不同. logistic回归(对数几率回归): 逻辑回归和感知机一样,定义一个决策面(…
回顾发现,李航的<统计学习方法>有些章节还没看完,为了记录,特意再水一文. 0 - logistic分布 如<统计学习方法>书上,设X是连续随机变量,X服从logistic分布是指X具有以下分布函数和密度函数: \[F(x) = P(X \leq x)=\frac{1}{1+e^{-(x-\mu)/\gamma}}\] \[f(x) = F'(x) = \frac{e^{-(x-\mu)/\gamma}}{1+e^{-(x-\mu)/\gamma}}\] 其中\(\mu\)是位置参…
线性回归(Linear Regression) 什么是回归? 给定一些数据,{(x1,y1),(x2,y2)…(xn,yn) },x的值来预测y的值,通常地,y的值是连续的就是回归问题,y的值是离散的就叫分类问题. 高尔顿的发现,身高的例子就是回归的典型模型. 回归分为线性回归(Linear Regression)和Logistic 回归. 线性回归可以对样本是线性的,也可以对样本是非线性的,只要对参数是线性的就可以,所以线性回归能得到曲线. 线性回归的目标函数? (1) 为了防止过拟合,将目标…
Logistic 回归 概述 Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式,以此进行分类. 须知概念 Sigmoid 函数 回归 概念 假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归.进而可以得到对这些点的拟合直线方程,那么我们根据这个回归方程,怎么进行分类呢?请看下面. 二值型输出分类函数 我们想要的函数应该是:…
有监督学习 机器学习分为有监督学习,无监督学习,半监督学习.强化学习.对于逻辑回归来说,就是一种典型的有监督学习. 既然是有监督学习,训练集自然能够用例如以下方式表述: {(x1,y1),(x2,y2),⋯,(xm,ym)} 对于这m个训练样本,每一个样本本身有n维特征. 再加上一个偏置项x0, 则每一个样本包括n+1维特征: x=[x0,x1,x2,⋯,xn]T 当中 x∈Rn+1, x0=1, y∈{0,1} 李航博士在统计学习方法一书中给分类问题做了例如以下定义: 分类是监督学习的一个核心…