四元数产生于1843年,是复数的一个扩展,所以里面包含了一些复数的运算.直到1985年才在图形学中使用. 四元数的优势是,相对与矩阵和欧拉角,四元数更直观和方便.四元数还可以用作某些方向上的插值,而欧拉角可能并不能很好的完成. 四元数使用四个数字表示.通常,前三个和旋转的轴密切相关,最后一个和旋转的角度相关.以下是一些数学背景,对于后面的四元数的变化十分重要. 注意到四元数是复数的一个扩展,那么可以表示为:Û = (â, v), 其中 v 是一个实数,而 â 则是可以看成是虚部,且 â= i*q…
本文为博主原创文章,欢迎转载,请保留出处:http://blog.csdn.net/andrewfan Unity中关于四元数的API详解 Quaternion类 Quaternion(四元数)用于计算Unity旋转.它们计算紧凑高效,不受万向节锁的困扰,并且可以很方便快速地进行球面插值. Unity内部使用四元数来表示所有的旋转. Quaternion是基于复数,并不容易直观地理解. 不过你几乎不需要访问或修改单个四元数参数(x,y,z,w); 大多数情况下,你只需要获取和使用现有的旋转(例如…
四元数的概念 & 如何使用四元数:  绕V轴旋转 f 角,对应的四元数: q = ( cos(f/2), Vx*sin(f/2), Vy*sin(f/2), Vz*sin(f/2) ) = cos(f/2) + Vx*sin(f/2)*i + Vy*sin(f/2)*j + Vz*sin(f/2)*k q的共轭: q' = ( cos(f/2), -Vx*sin(f/2), -Vy*sin(f/2), -Vz*sin(f/2) )   (不应该用q'这个符号,只是为了方便打字) 当前有空概念中的…
视觉SLAM中的数学基础 第二篇 四元数 什么是四元数 相比欧拉角,四元数(Quaternion)则是一种紧凑.易于迭代.又不会出现奇异值的表示方法.它在程序中广为使用,例如ROS和几个著名的SLAM公开数据集.g2o等程序都使用四元数记录机器人的姿态.因此,理解四元数的含义与用法,对学习SLAM来说是必须的.本节我们就来讲讲四元数. 首先,请读者不要对四元数有什么神秘的感觉.四元数仅是3D姿态的一种表达方式,我们用一个单位四元数表达原本用旋转矩阵表示的三维旋转.这样做一个直接的好处是省空间.一…
说实话关于四元数这一节真的是不好懂,因为里面涉及到好多数学知识,单说推出来的公式就有很多.不怕大家笑话,对于四元数的学习我足足花了两天的时间,包括整理出这篇文章.在前面一章我写到了“变换”,这也是总结的学习笔记.我发现,写博客真是的是一个好多学习方法,加上之前一个博士师兄告诉我,要想好好的学习一本书或者一门技术,那么以此将学习笔记或者经验写成博客专栏是一种有效的方法.现在我要坚持这种方式,给自己留下学习过程中的足迹,也给大家分享一下.欢迎大家指出其中的不足,谢谢! 四元数是表示旋转的另一种数学形…
1.Unity中,四元数不能保存超过360度的旋转,所以如此大范围的旋转不能直接两个四元数做插值(当你用0度和721度的四元数做插值,它只会转1度,而不会转两圈). 2.要把旋转设置成某个方向,用LookRotation,不要用FromToRotation.前者结果测试过,是绝对准确的.…
在unity中四元数和向量相乘在unity中可以变换旋转.四元数和四元数相乘类似矩阵与矩阵相乘的效果. 矩阵相乘的顺序不可互换,只有特殊条件矩阵才可互换.四元数相乘类似,今天就因为这个问题掉进坑里了,记录一下 问题大致是,有一个cube,它会看向右边的板,用角轴旋转,但我想要y轴看向它 Quaternion.AngleAxis(-, Vector3.forward); 以下代码就是没有注意相乘顺序导致的结果 , Vector3.forward); , referenceTransform.for…
在3D图形学中,最常用的旋转表示方法便是四元数和欧拉角,比起矩阵来具有节省存储空间和方便插值的优点.本文主要归纳了两种表达方式的转换,计算公式采用3D笛卡尔坐标系: 单位四元数可视化为三维矢量加上第四维的标量坐标 .其中,矢量部分等于单位旋转轴乘以旋转半角的正弦,标量部分等于旋转半角的余弦. 图1 3D Cartesian coordinate System (from wikipedia) 定义分别为绕Z轴.Y轴.X轴的旋转角度,如果用Tait-Bryan angle表示,分别为Yaw.Pit…
转:四元数(Quaternions) 好吧,我必须承认到目前为止我还没有完全理解四元数,我一度把四元数理解为轴.角表示的4维向量,也就在下午我才从和同事的争辩中理解了四元数不完全是角.轴这么简单,为此写点心得给那些同我一样搞了2年3D游戏的还不清楚四元数的朋友. 为什么使用四元数 为了回答这个问题,先来看看一般关于旋转(面向)的描述方法-欧拉描述法.它使用最简单的x,y,z值来分别表示在x,y,z轴上的旋转角度,其取值为0-360(或者0-2pi),一般使用roll,pitch,yaw来表示这些…
    其实本来这篇文章是打算接上篇的各种变化矩阵的推导了,想了想,还是先讲四元数吧.本人的文章并不会提到欧拉角,因为我自己没弄懂欧拉角的万向锁问题.     很多人学习数学时,会有这样一个疑惑,这东西有什么用.那四元数是用来干什么的.四元数是由哈密顿在1843年发现的,但是直到1985年Shoemake才将其引入计算机图形学,四元数的作用极其简单,用来表示3D物体的方位及旋转     一个3D物体放在世界中,只有一个位置坐标是不够的,这样意味着他总是朝着某一个方向.比如说,我们的头,我们可以摇…