首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Hadoop学习之路(十八)MapReduce框架Combiner分区
】的更多相关文章
Hadoop学习之路(八)在eclispe上搭建Hadoop开发环境
一.添加插件 将hadoop-eclipse-plugin-2.7.5.jar放入eclipse的plugins文件夹中 二.在Windows上安装Hadoop2.7.5 版本最好与Linux集群中的hadoop版本保持一致 1.将hadoop-2.7.5-centos-6.7.tar.gz解压到Windows上的C盘software目录中 2.配置hadoop的环境变量 HADOOP_HOME=C:\software\hadoop-2.7.5 Path=C:\software\hadoop-2…
Hadoop学习之路(十八)MapReduce框架Combiner分区
对combiner的理解 combiner其实属于优化方案,由于带宽限制,应该尽量map和reduce之间的数据传输数量.它在Map端把同一个key的键值对合并在一起并计算,计算规则与reduce一致,所以combiner也可以看作特殊的Reducer. 执行combiner操作要求开发者必须在程序中设置了combiner(程序中通过job.setCombinerClass(myCombine.class)自定义combiner操作). Combiner组件是用来做局部汇总的,就在mapTask…
Hadoop 学习笔记 (十) MapReduce实现排序 全局变量
一些疑问:1 全排序的话,最后的应该sortJob.setNumReduceTasks(1);2 如果多个reduce task都去修改 一个静态的 IntWritable ,IntWritable会乱序吧~输入数据:file1232654321575665223file259562265092file326546 import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.…
Hadoop 学习之路(八)—— 基于ZooKeeper搭建Hadoop高可用集群
一.高可用简介 Hadoop 高可用 (High Availability) 分为 HDFS 高可用和 YARN 高可用,两者的实现基本类似,但 HDFS NameNode 对数据存储及其一致性的要求比 YARN ResourceManger 高得多,所以它的实现也更加复杂,故下面先进行讲解: 1.1 高可用整体架构 HDFS 高可用架构如下: 图片引用自:https://www.edureka.co/blog/how-to-set-up-hadoop-cluster-with-hdfs-hig…
嵌入式Linux驱动学习之路(十八)LCD驱动
驱动代码: /************************************************************************* > File Name: lcd.c > Author: > Mail: > Created Time: 2016年11月02日 星期三 15时21分59秒 ************************************************************************/ #include…
IOS学习之路十八(通过 NSURLConnection 发送 HTTP 各种请求)
你想通过 Http 协议向服务器发送一个 Get 的包装请求,并在这个请求中添加了一些请 求参数. 向远程服务器发送一个 GET 请求,然后解析返回的数据.通常一个 GET 请求是添加了 一些参数的,这些参数一般是添加在 URL 请求中.我准备了一个 GET 形式的 webservice 接口,你可以通过 http://pixolity.com/get.php 来进 行请求. /* URL = http://pixolity.com/get.php?param1=First¶m2=Second …
Java框架spring 学习笔记(十八):事务管理(xml配置文件管理)
在Java框架spring 学习笔记(十八):事务操作中,有一个问题: package cn.service; import cn.dao.OrderDao; public class OrderService { private OrderDao orderDao; public void setOrderDao(OrderDao orderDao) { this.orderDao = orderDao; } //调用dao的方法 //业务逻辑层,写转账业务 public void accou…
阿里封神谈hadoop学习之路
阿里封神谈hadoop学习之路 封神 2016-04-14 16:03:51 浏览3283 评论3 发表于: 阿里云E-MapReduce >> 开源大数据周刊 hadoop 学生 spark 摘要: 在大数据时代,要想个性化实现业务的需求,还是得操纵各类的大数据软件,如:hadoop.hive.spark等.笔者(阿里封神)混迹Hadoop圈子多年,经历了云梯1.ODPS等项目,目前base在E-Mapreduce.在这,笔者尽可能梳理下hadoop的学习之路. 引言 当前,越来越多的同…
《Hadoop学习之路》学习实践
(实践机器:blog-bench) 本文用作博文<Hadoop学习之路>实践过程中遇到的问题记录. 本文所学习的博文为博主“扎心了,老铁” 博文记录.参考链接https://www.cnblogs.com/qingyunzong/category/1169344.html 问题一: <Hadoop学习之路(四)Hadoop集群搭建和简单应用>执行start-dfs.sh时,报错3个: 1. 报错现象: 原因:hadoop默认ssh采用的是22端口号,但是我们公司内部机器为了安全已修…
MapReduce教程(二)MapReduce框架Partitioner分区<转>
1 Partitioner分区 1.1 Partitioner分区描述 在进行MapReduce计算时,有时候需要把最终的输出数据分到不同的文件中,按照手机号码段划分的话,需要把同一手机号码段的数据放到一个文件中:按照省份划分的话,需要把同一省份的数据放到一个文件中:按照性别划分的话,需要把同一性别的数据放到一个文件中.我们知道最终的输出数据是来自于Reducer任务.那么,如果要得到多个文件,意味着有同样数量的Reducer任务在运行.Reducer任务的数据来自于Mapper任务,也就说Ma…