/* 算法题目 * 2016年4月11日16:11:08 * 一只青蛙,一次可以跳1步,或者2步,或者3步,现在要跳100级台阶,请问青蛙有多少种上100级台阶的跳法 * 1步的有$n 2步的有$m 3步的有$t * 思路,,1步$n的范围就是0-100,2步$n的范围就是0-50,3步$t的范围就是0-33, * */ $g =1; for($n=0;$n<=100;$n++){ for($m=0;$m<=50;$m++){ for($t=0;$t<=33;$t++){ if(1*$n…
是斐波那契数列问题 假设f(n)是n个台阶跳的次数:(假设已经调到第n个台阶,最后一次是由哪个台阶跳上来的) f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) == f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) == f(n) = 2*f(n-1) 所以,可以得出递推式: public static int jumpFloor(int n) { if (n <= 0) return 0; if (n =…
10- I. 斐波那契数列 方法一 Top-down 用递归实现 def fibonacci(n): if n <= 0: return 0 if n == 1: return 1 return fibonacci(n-1) + fibonacci(n-2) 不过这种方法在leetcode上超时了. 方法二 Bottom-up 用循环实现 class Solution: def fib(self, n: int) -> int: if n <= 0: return 0 if n == 1…
递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调用的层级太多,就会超出栈容量. 循环:通过设置计算的初始值及终止条件,在一个范围内重复运算. 斐波拉契数列 题目一:写一个函数,输入n,求斐波拉契(Fibonacci)数列的第n项,定义如下: 第一种解法:用递归的算法: long long Fabonacci(unsigned int n) { i…
题目1:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶.求该青蛙跳上一个n级台阶共有多少种跳法? 题目2:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶...也可以一次跳n级台阶.求该青蛙跳上一个n级台阶共有多少种跳法? #include<iostream> #include<math.h> using namespace std; // int jumpCase1(int n){ if(n == 1) return 1; if(n == 2) return 2; return…
题目一(青蛙跳台阶): 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 分析: 假设只有一级台阶,则总共只有一种跳法: 假设有两级台阶,则总共有两种跳法: 假设有n级台阶,那么第一步就要分为跳一步和跳两步: 跳一步,那么接下来就是跳n-1: 跳两步,那么接下来就是跳n-2: 所以,总数可以认为是f(n-1)+f(n-2). 主要代码: def frog(num): if num <= 2: return num t1, t2 = 1, 2 for _…
时间限制:1秒     空间限制:32768k 斐波那契数列指的是这样一个数列: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368. 可以观察到,从第3个数开始,每个数的值都等于前连个数之和. 同时,定义f(0)=0, f(1)=1. 则 f(2)=f(1)+f(0)=1; f(3)=f(2)+f(1)=2; ... 依次类推,  f(…
 本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项. 思路 如果直接写递归函数,由于会出现很多重复计算,效率非常底,不采用. 要避免重复计算,采用从下往上计算,可以把计算过了的保存起来,下次要计算时就不必重复计算了:先由f(0)和f(1)计算f(2),再由f(1)和f(2)计算f(3)……以此类推就行了,计算第n个时,只要保存第n-1和第n-2项就可以了.…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路 暴力枚举(自顶向下递归): 若台阶数小于等于0,返回0: 若台阶数为1,返回1:(1) 若台阶数为2,返回2:(1,1),(2) 否则,返回F(n-1)+F(n-2);(因为下一步只能是跳1级或者跳2级) 备忘录算法(自顶向下递归): 上面的方法包含大量重复计算,这里利用Map来记录计算过的结果,以减少计算次数. 迭代法(自底向上迭代,也许也算动态规划吧): 拿…
题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶.求该青蛙跳上一个 n 级的台阶总共有多少种跳法. 答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1. 示例 1: 输入:n = 2 输出:2 示例 2: 输入:n = 7 输出:21 提示: 0 <= n <= 100 思路 同 [剑指Offer]面试题10- I. 斐波那契数列 代码 时间复杂度:O(n) 空间复杂度:O(1) class Solution { public: int…