uoj#188. 【UR #13】Sanrd(Min_25筛)】的更多相关文章

传送门 思路 也可以算是一个板题了吧qwq 考虑min_25筛最后递归(也就是DP)的过程,要枚举当前最小的质因子是多少. 那么可以分类讨论,考虑现在这个质因子是否就是次大质因子. 如果不是,那么就是\(S(n/p,k+1)\):如果是,那么剩下的必定是一个更大的质数,那么就需要知道一段区间内有多少个质数. 质数个数显然可以min_25筛给搞出来. 于是就做完了. 代码 #include<bits/stdc++.h> clock_t t=clock(); namespace my_std{ u…
传送门 省选之前做数论题会不会有Debuff啊 这道题显然是要求\(1\)到\(x\)中所有数第二大质因子的大小之和,如果不存在第二大质因子就是\(0\) 线性筛似乎可以做,但是\(10^{11}\)的数据范围让人望而却步,而杜教筛需要对\(f(x)\)找到一个函数\(g(x)\)做狄利克雷卷积成为一个好算前缀和的函数\(h(x)\),相信各位是找不到这样一个函数的.所以考虑Min_25筛.但用Min_25筛还不知道要筛什么东西,故从Min_25筛最后的计算过程入手. Min_25筛的每一层递归…
题目:http://uoj.ac/problem/188 令 \( s(n,j)=\sum\limits_{i=1}^{n}[min_i>=p_j]f(j) \) ,其中 \( min_i \) 表示 i 的最小质因子. 令 \( g(n,j)=\sum\limits_{i=1}^{n}[i \in P or min_i>p_j]1 \) ,其中 P 表示质数集合. \( s(n,j)=s(n,j+1)+s(\frac{n}{p_j},j)+p_j(g(\frac{n}{p_j},cnt)-(…
题目:http://uoj.ac/problem/188 参考博客:https://www.cnblogs.com/cjoieryl/p/10149748.html 关键是枚举最小质因子...所以构造的 S 与最小质因子有关. 代码如下: #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; typedef long long l…
[UOJ#188]Sanrd(min_25筛) 题面 UOJ 题解 今天菊开讲的题目.(千古神犇陈菊开,扑通扑通跪下来) 题目要求的就是所有数的次大质因子的和. 这个部分和\(min\_25\)筛中枚举最小值因子有异曲同工之妙. min_25筛什么的戳这里 并且这题并没有积性函数. 所以我们先筛出质数个数. 然后考虑如何计算答案\(S(n,1)\) 首先看初值,假设当前计算的是\(S(x,y)\) 表示的是\([1,x]\)中,所有最小质因子大于等于\(Prime_y\)的贡献 所有质数的贡献显…
题目 不是很能看懂题意,其实就是求\([l,r]\)区间内所有数的次大质因子的和 这可真是看起来有点鬼畜啊 这显然不是一个积性函数啊,不要考虑什么特殊的函数了 我们考虑Min_25筛的过程 设\(S(x,y)\)表示\([1,x]\)内的数满足\(minp(i)>=y\)的数的次大质因子的和 还是分成质数合数以及\(1\)来考虑\(S(x,y)\) 质数和\(1\)都没什么贡献,直接考虑合数 还是枚举最小质因子\(P_k\)以及其出现次数\(e\) 考虑从\(S(\frac{x}{P_k^e},…
min_25 筛介绍 我们考虑这样一个问题. \[ans=\sum_{i = 1}^nf(i)\\ \] 其中 \(1 \le n \le 10^{10}\) 其中 \(f(i)\) 是一个奇怪的函数.并不像 \(μ(i),φ(i),iφ(i)\)那样具有那么好的性质.但是满足以下条件: 若 \(p\)为质数,则 \(f(p)\)是一个关于 \(p\)的多项式,比如 \(μ(p)=−1,φ(p)=p−1\). 若 \(p\)为质数,\(e\)为正整数,则 \(f(pe)\)可以很快求出.(通常是…
杜教筛 \(\) 是 \(\) 的前缀和,\(\), \(\) 同理. 假设 \( × = ℎ\) ,并且 \(, \) 易求出,\(\) 难求出. 那么 \[H () = \sum_{ \cdot ≤} () () = \sum_{≤} () (\frac {} {})\\ = f(1)\cdot () + \sum_{2≤≤} () (\frac {} {})\] 有: \[f(1)\cdot G(n)=H(n)-\sum_{2≤≤} () (\frac {} {}) \] 整除分块,可以在…
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_{n|d}\mu(\frac{d}{n})g(d)\end{aligned}\] 实际上还有 \[\begin{aligned}g(n)&=\sum_{d|n}f(d)\\f(n)&=\sum_{d|n}\mu(\frac{n}{d})g(d)\end{aligned}\] 证明可以看看这里,…
传送门 思路 (以下令\(F(n)=f(n)^k\)) 首先肯定要莫比乌斯反演,那么可以推出: \[ ans=\sum_{T=1}^n \lfloor\frac n T\rfloor^2\sum_{d|T}F(d)\mu(T/d) \] 可以整除分块,但后面的东西怎么办呢? 令\(G(T)=F*\mu\),那么就有 \[ ans=\sum_{T=1}^n \lfloor\frac n T\rfloor^2G(T) \] 看到\(\mu\)函数有点烦,考虑用杜教筛的式子消去它. \[ g(1)S(…