dp单调性优化】的更多相关文章

对于单调性优化其实更多的是观察dp的状态转移式子的单调性 进而用优先队列 单调队列 二分查找什么的找到最优决策 使时间更优. 对于这道题就是单调性优化的很好的例子 首先打一个暴力再说. f[i][j]表示前i个木匠刷前j个木板所得到的最大价值 f[i][j]=max(f[i][j],f[i-1][j]); f[i][j]=max(f[i][j],f[i][j-1]) f[i][j]=max(f[i][j],f[i-1][k]+(j-k)*r(j));(k<t(j)<=j)&&(…
跟着书上的思路学习dp的单调性优化觉得还是很容易想的. 数据范围: dp,数据范围是百万,这应该是O(n)的算法了. 首先不难想到设f[i]表示到第i个百米所能达到的最大能量,那么f[n]即为所求. f[i]=max(f[i],f[j]+s[i]-s[j]-cost[i]);这个地方s数组是能量的前缀和,然后发现需要多加一层循环来枚举j,这个时候就是O(n^2)的算法了. 这样的话,就只有40分了,毕竟看分做题.这分给的还是很良心的. 考虑优化首先我们发现状态转移方程可以这样变f[i]=max{…
题意 有一个长度为 \(n\) 的序列 \(A\) 和常数 \(L, P\) ,你需要将它分成若干段,每 \(P\) 一段的代价为 \(| \sum ( A_i ) − L|^P\) ,求最小代价的划分方案. \(n \le 10^5 , 1 \le P \le 10\) 题解 考虑暴力 \(O(n^2)\) dp. \[ dp_i = \min_{j = 0} ^ {i - 1} |sum_j - sum_i - L|^P + dp_j \] 这个方程是具有决策单调性的. 决策单调性是指,对于…
遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) 数据范围 洛咕上也没给,我能怎么办啊 非正解做法一:暴力 应该都会吧,\(O(n^2)\)枚举.洛谷上貌似40pts. 非正解做法二:…
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$表示当前这段序列中数字大小为i的数的个数. 题解: 先考虑暴力DP, f[i][j]表示DP到i位,分为j段的最小代价. 则$f[i][j] = min(f[l - 1][j] + sum[l][i])$,其中sum[l][i]表示区间[l, i]分成一段的代价. 然后可以发现,这是具有决策单调性的…
Description 通往贤者之塔的路上,有许多的危机. 我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增, 在[1,n]中,一共有n个节点.我们把编号在[1,n]的叫做正确节点,[n+1,m]的叫做错误节点.一个叶子,如果是正 确节点则为正确叶子,否则称为错误叶子.莎缇拉要帮助昴到达贤者之塔,因此现在面临着存档位置设定的问题. 为了让昴成长为英雄,因此一共只有p次存档的机会,其中1和n必须存档.被莎缇拉设置为要存档的节点称为存档 位置.当…
传送门 一道神奇的dp题. 这题的决策单调性优化跟普通的不同. 首先发现这道题只跟r−lr-lr−l有关. 然后定义状态f[i][j]f[i][j]f[i][j]表示猜范围为[L,L+i−1][L,L+i-1][L,L+i−1]的数有jjj次报警机会所需的最小代价. 那么有: f[i][j]=minf[i][j]=minf[i][j]=min{max(f[k][j],f[i−k][j−1]+1)max(f[k][j],f[i-k][j-1]+1)max(f[k][j],f[i−k][j−1]+1…
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的队列来维护,表示在(l,r)(l,r)(l,r)这个区间当前的决策都是ididid,然后在每次求决策点的时候弹一下队头,求出当前解之后我们更新一下队尾就行了. 代码: #include<bits/stdc++.h> #define N 100005 #define ld long double u…
单调性优化DP Tags:动态规划 作业部落链接 一.概述 裸的DP过不了,怎么办? 通常会想到单调性优化 单调队列优化 斜率优化 决策单调性 二.题目 [x] 洛谷 P2120 [ZJOI2007]仓库建设 [x] 洛谷 P2900 [USACO08MAR]土地征用 [x] 洛谷 P3195 [HNOI2008]玩具装箱 [x] 洛谷 P3628 [APIO2010]特别行动队 [ ] 洛谷 P4360 [CEOI2004]锯木厂选址(留作复习) [x] 洛谷 P4072 [SDOI2016]…
第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由于根号函数斜率递减,所以i决策的贡献的增长速度必定比j快. 于是使用基础的决策单调性优化即可. 注意两个问题,一是DP函数要存实数而不能存整数,因为先取整会丢失在后面的判断中需要的信息.二是记录决策作用区间的时候左端点要实时更新,即下面的p[st].l++,否则在二分时会出现错误. #include<c…