一.相同点 第一,LR和SVM都是分类算法(SVM也可以用与回归) 第二,如果不考虑核函数,LR和SVM都是线性分类算法,也就是说他们的分类决策面都是线性的. 这里要先说明一点,那就是LR也是可以用核函数的.总之,原始的LR和SVM都是线性分类器,这也是为什么通常没人问你决策树和LR什么区别,你说一个非线性分类器和一个线性分类器有什么区别? 第三,LR和SVM都是监督学习算法. 第四,LR和SVM都是判别模型. 这里简单讲解一下判别模型和生成模型的差别: 判别式模型(Discriminative…