全景分割pipeline搭建】的更多相关文章

全景分割pipeline搭建 整体方法使用语义分割和实例分割结果,融合标签得到全景分割结果: 数据集使用:panoptic_annotations_trainval2017和cityscapes; panoptic_annotations_trainval2017标签为全景分割的整体标签,之前想打算转换成语义和实例分割标签,在分别做各自任务,由于转换发现有一些格式损坏的样本在里面,需要挑出来才能继续转换,就暂时换成cityscpaes; cityscapes:发现val里面,test里面也有一些…
全景智慧城市搭建是一个任重而道远的任务,但是也促进了实体市场的蓬勃发展与进步.VR技术改变了人们以往的娱乐方式,而全景智慧城市将会彻底改变人们的生活习惯.VR是未来的计算平台,更是人力发展历史中,技术革命的新阶段.VR虚拟现实.VR全景,又被称为3D实景.720全景,是一种新兴的富媒体技术,其与视频,声音,图片等传统的流媒体大的区别是"可操作,可交互".其实目前的VR全景拍摄技术并不是真正的VR内容制作技术,大部分用的设备是单反相机+鱼眼镜头+云台+三脚架+遥控器,也有的用的一体机,但…
在互联网时代的今天,用户体验至上,全景智慧城市搭建作为一个新型的科技展示技术,通过新颖的广告方式更能吸引用户眼球,足不出户,观看现场实景,达到沉浸式体验.在这样的大环境下,全景智慧城市搭建开启了VR全景拍摄购物新潮流.把实体商家搬到线上全景智慧城市搭建当中,让用户达到身临其境的极致体验. 实体市场正在受到了互联网行业的不断冲击,转型或者关门两大难题横在企业家面前,直到全景智慧城市搭建的概念出世,让这些实体市场的企业们,看到了新的希望. 在互联网大趋势下,实体商家都迫切需要一个好的线上广告宣传方式…
全景分割是18年新推出的一个任务,它要求同时分割出目标和背景,也就是既有实例分割也有语义分割,用官方的话讲是朝着真实世界视觉系统的重要一步 如图所示,里面既有对天空,草地等stuff的分割,也有对目标实例的分割. 这项任务加入到了2018年的挑战赛,结果会在ECCV2018的workshop上展示.…
全景分割:CVPR2019论文解析 Panoptic Segmentation 论文链接: http://openaccess.thecvf.com/content_CVPR_2019/papers/Kirillov_Panoptic_Segmentation_CVPR_2019_paper.pdf For results: https://arxiv.org/abs/1801.00868. 摘要 本文提出并研究了一个称为全景分割(PS)的任务.全景分割是典型的语义分割(为每个像素指定一个类标签…
CICD概述 CI-持续集成(Continuous Integration):频繁地将代码集成到主干的一种开发实践,每次集成都通过自动化的构建(包括编译,发布,自动化测试)来验证,从而尽早地发现集成错误. CD-持续部署(Continuous Deployment):从代码提交,自动化完成测试.构建及到生产环境的部署 在Rancher中做CI/CD的方法 配合第三方工具,Drone/Travis/Jenkins,配合webhook,rancher cli等触发部署更新 使用Rancher pip…
CICD概述 CI-持续集成(Continuous Integration):频繁地将代码集成到主干的一种开发实践,每次集成都通过自动化的构建(包括编译,发布,自动化测试)来验证,从而尽早地发现集成错误. CD-持续部署(Continuous Deployment):从代码提交,自动化完成测试.构建及到生产环境的部署 在Rancher中做CI/CD的方法 配合第三方工具,Drone/Travis/Jenkins,配合webhook,rancher cli等触发部署更新 使用Rancher pip…
文件解析 参考github:https://github.com/cocodataset/panopticapi 输入图像:…
BlendMask通过更合理的blender模块融合top-level和low-level的语义信息来提取更准确的实例分割特征,该模型效果达到state-of-the-art,但结构十分精简,推理速度也不慢,精度最高能到41.3AP,实时版本BlendMask-RT性能和速度分别为34.2mAP和25FPS,并且论文的优化方法很有学习的价值,值得一读 论文:BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation 论文地址:htt…
[摘要]本文简单介绍了NAS的发展现况和在语义分割中的应用,并且详细解读了两篇流行的work:DARTS和Auto-DeepLab. 自动网络搜索 多数神经网络结构都是基于一些成熟的backbone,如ResNet, MobileNet,稍作改进构建而成来完成不同任务.正因如此,深度神经网络总被诟病为black-box,因为hyparameter是基于实验求得而并非通过严谨的数学推导.所以,很多DNN研究人员将大量时间花在修改模型和实验“调参”上面,而忽略novelty本身.许多教授戏称这种现象…
CVPR2020论文解析:实例分割算法 BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation 论文链接:https://arxiv.org/pdf/2001.00309.pdf 摘要 实例分割是基本的视觉任务之一.近年来,全卷积实例分割方法因其比Mask R-CNN等两阶段方法简单.高效而备受关注.迄今为止,当模型具有相似的计算复杂度时,几乎所有这些方法在掩模精度上都落后于两级掩模R-CNN方法,留下了很大的改进空间.在这项工…
感兴趣的同学可以关注这个翻译项目 . 我的博客原文 和 我的Github 前段时间翻译的Spring MVC官方文档完成了第一稿,相关的文章和仓库可以点击以下链接.这篇文章,主要是总结一下这个翻译项目自开始到上线发布,完整的一个生命流程.内容包括 翻译环境搭建 .项目管理 与 自动化构建 三部分. 博客首页声明:Spring MVC官方文档翻译稿发布 托管在七牛上的翻译文档 Github仓库 环境搭建 翻译与写作一样,首要之事均为专注于翻译/写作本身,而不考虑样式等方面.而章节之间的联系,自然也…
作者:凹凸曼 - EC 疫情期间,打破社交距离限制的交互模式被推向前台,为不少行业的传统交易提供了想象的空间. 疫情时期,房地产租售业受到的冲击无疑是巨大的,由于人口流动的限制,需求量大幅减少,无法现场看房更加重了这一危机.但有危就有机,倒是意外推动了一项技术的推广--VR 看房.作为 WebVR 的子集,Web 全景是多数 WebVR 需求的降级选择,例如街景地图,本文将带大家实现一个简单的 Web 全景. 这里是文章的剩余部分.在hexo模版里可通过{% raw %}{{ post.more…
CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)1. 目标检测:FCOS(CVPR 2019)目标检测算法FCOS(FCOS: Fully Convolutional One-Stage Object Detection),该算法是一种基于FCN的逐像素目标检测算法,实现了无锚点(anchor-free).无提议(proposal free)的解决方案,并且提出了中心度(Center-ness)的思想,同时在召回率等方面表…
SOLOv 2:实例分割(动态.更快.更强) SOLOv2:  Dynamic, Faster and Stronger 论文链接: https://arxiv.org/pdf/2003.10152.pdf 代码链接:https://github.com/aim-uofa/AdelaiDet 摘要 在这项工作中,本文的目标是建立一个简单,直接,快速的实例分割框架,具有很强的性能.本文遵循王等人SOLO的原则."SOLO:按位置分割对象"[33].重要的是,本文进一步通过动态学习对象分段…
图像实例分割:CenterMask CenterMask: single shot instance segmentation with point representation 论文链家: https://arxiv.org/abs/2004.04446 摘要 本文提出了一种简单.快速.准确的单镜头实例分割方法.单阶段实例分割面临两个主要挑战:对象实例区分和像素级特征对齐.相应地,本文将实例分割分解为两个子任务:局部形状预测(即使在重叠的情况下也可以分离实例)和全局显著性生成(以像素到像素的方…
目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D点云分割 3.1 3D语义分割 3.1.1 基于投影的方法 多视图表示 球形表示 3.1.2 基于离散的方法 稠密离散表示 稀疏的离散表示 3.1.3 混合方法 3.1.4 基于点的方法 逐点MLP方法 点卷积方法 基于RNN方法 基于图方法 3.2 实例分割 3.2.1 基于候选框的方法 3.2.2 不需要候选框的方法 3.3 部件分割 3.4 总结 4. 结论 3D点云深度学习:综述(3D点云分割部分) Deep Le…
摘要:近日,CVPR 2022放榜,基于CANN的AI论文<Interactive Image Synthesis with Panoptic Layout Generation>强势上榜. 本文分享自华为云社区<昇腾CANN论文上榜CVPR,全景图像生成算法交互性再增强!>,作者:昇腾CANN . 近日,CVPR 2022放榜,基于CANN的AI论文<Interactive Image Synthesis with Panoptic Layout Generation>…
论文原址:https://arxiv.org/abs/1902.05093 github:https://github.com/lingtengqiu/Deeperlab-pytorch 摘要 本文提出了一种bottoom-up,single-shot的全景图像分析方法.全景图像分析包含"stuff"形式(类别)的语义分割及“thing”形式(区别不同个体)的实例分割.目前,全景图像分析的经典方法是由语义分割任务及实例分割任务的独立的模块组成,同时其需要进行多次inference操作.…
前言 本文深入探讨了如何设计神经网络.如何使得训练神经网络具有更加优异的效果,以及思考网络设计的物理意义. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. 论文:https://arxiv.org/pdf/2201.03545.pdf 代码: https://github.com/facebookresearch/ConvNeXt 引言 VIT问世以后,Swin Transformer在图像领域(分类下游任务)的全面大幅度超越 CNN 模型,仿…
前言 本文提出了一种新的弱监督多标签分类(WSML)方法,该方法拒绝或纠正大损失样本,以防止模型记忆有噪声的标签.由于没有繁重和复杂的组件,提出的方法在几个部分标签设置(包括Pascal VOC 2012.MS COCO.NUSWIDE.CUB和OpenImages V3数据集)上优于以前最先进的WSML方法.各种分析还表明,方法的实际效果很好,验证了在弱监督的多标签分类中正确处理损失很重要. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. ​…
前言 在本文中,作者引入了一个简单的框架,即Slimmable Domain Adaptation,以通过权重共享模型库改进跨域泛化,从中可以对不同容量的模型进行采样,以适应不同的精度效率权衡.此外,作者还开发了一种随机集成蒸馏方法,以充分利用模型库中的互补知识进行模型间交互.在各种资源限制下,作者的框架在多个基准上大大超过了其他竞争方法,并可以保持对仅源代码模型的性能改进,即使计算复杂性降低到1/64. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招…
Two Stage 的精度优势 二阶段的分类:二步法的第一步在分类时,正负样本是极不平衡的,导致分类器训练比较困难,这也是一步法效果不如二步法的原因之一,也是focal loss的motivation.而第二步在分类时,由于第一步滤掉了绝大部分的负样本,送给第二步分类的proposal中,正负样本比例已经比较平衡了,所以第二步分类中不存在正负样本极度不平衡的问题.即二步法可以在很大程度上,缓和正负样本极度不平衡的分类问题二阶段的回归:二步法中,第一步会先对初始候选框进行校正,然后把校正过的候选框…
TensorExpand/TensorExpand/Object detection/Data_interface/MSCOCO/ 深度学习数据集介绍及相互转换 Object segmentation Recognition in context Superpixel stuff segmentation 330K images (>200K labeled) 1.5 million object instances object categories stuff categories capt…
#磨染的初心--计算机视觉的现状 [这一系列文章是关于计算机视觉的反思,希望能引起一些人的共鸣.可以随意传播,随意喷.所涉及的内容过多,将按如下内容划分章节.已经完成的会逐渐加上链接.] 缘起 三维感知 目标识别 3.0. 目标是什么 3.1. 图像分割 3.2. 纹理与材质 3.3. 特征提取与分类 3.4. 其它 目标(和自身)在三维空间中的位置关系 目标的三维形状及其改变.目标的位移 符号识别 数字图像处理 图像分割 为了通过材质.形状.结构识别目标,对图像进行分割应该是必然的选择.在这一…
代码基于第二个例子,支持多客户端的连接,在线聊天. 主要思路: 连接建立时,在服务器端,保存channel 对象,当有新的客户端加入时,遍历保存的channel集合,向其他客户端发送加入消息. 当一个客户端发送消息时,在服务器端,遍历channel集合,判断是否为发送者,来修改发送内容,如:    XX说:  我说: 同样的: server中的主程序和第二个例子类似 server中的initializer import io.netty.channel.ChannelInitializer; i…
一.简介 官方网站:http://cocodataset.org/全称:Microsoft Common Objects in Context (MS COCO)支持任务:Detection.Keypoints.Stuff.Panoptic.Captions说明:COCO数据集目前有三个版本,即2014.2015和2017,其中2015版只有测试集,其他两个有训练集.验证集和测试集.(本贴内容来源于官网+个人理解与描述) 二.数据集下载 方法一:直接官网下载(需要FQ).方法二:本人已把官网数据…
RefineDet 一.相关背景 中科院自动化所最新成果,CVPR 2018 <Single-Shot Refinement Neural Network for Object Detection> 在VOC2007测试集上,图像输入512*512时,map为81.8%,速度为24fps. 论文链接:https://arxiv.org/abs/1711.06897 二.主要思想 1.单阶段框架用于目标检测,由两个相互连接模块组成:ARM和ODM: 2.设计了TCB来传输ARM特征,来处理更具挑…
一. 背景介绍 语义分割(Semantic Segmentation):对一张图片上的所有像素点进行分类,同一物体的不同实例不需要单独分割出来. 实例分割(Instance Segmentation):目标检测(比b-box更精确到边缘)和语义分割(标出同类不同个体)的结合. 全景分割(Panoramic Segmentation):语义分割和实例分割的结合,背景也要检测和分割. 图像分割是图像理解的重要基石,在自动驾驶.无人机.工业质检等应用中都有着举足轻重的地位.缺陷检测论文现在好多都是借助…
本文用户记录黄埔学院学习的心得,并补充一些内容. 课程2:十行代码高效完成深度学习POC,主讲人为百度深度学习技术平台部:陈泽裕老师. 因为我是CV方向的,所以内容会往CV方向调整一下,有所筛检. 课程主要有以下三个方面的内容: 深度学习POC的基本流程 实用预训练模型应用工具快速验证 通用模型一键检测 十行代码完成工业级文本分类 自动化调参AutoDL Finetuner 一.深度学习POC的基本流程 1.1  深度学习发展历程 2006年,这一年多伦多大学的Geoffrey Hinton教授…