首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
hadoop mapreduce 优化
】的更多相关文章
hadoop mapreduce 优化
http://www.cnblogs.com/c840136/archive/2013/03/10/2952887.html http://irwenqiang.iteye.com/blog/1535809 mapreduce程序效率的瓶颈在于两点: 1:计算机性能 2:I/O操作优化 优化无非包括时间性能和空间性能两个方面,存在一下常见的优化策略: 1:输入的文件尽量采用大文件 众多的小文件会导致map数量众多,每个新的map任务都会造成一些性能的损失.所以可以将一些小文件在进行mapredu…
Hadoop Mapreduce分区、分组、二次排序过程详解[转]
原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动 (1)最简单的过程: map - reduce (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce (3)增加了在本地先进性一次reduce(优化)过程: map - combin(本地reduce) - partition -reduce2.Mapreduce中Par…
hadoop配置优化
yarn-site.xml <property> <name>yarn.nodemanager.resource.memory-mb</name> <value>22528</value> <discription>每个节点可用内存,单位MB,默认9182MB</discription> </property> <property> <name>yarn.scheduler.minimu…
[转载] Hadoop MapReduce
转载自http://blog.csdn.net/yfkiss/article/details/6387613和http://blog.csdn.net/yfkiss/article/details/6387461 Hadoop MapReduce是一个用于处理海量数据的分布式计算框架.这个框架解决了诸如数据分布式存储.作业调度.容错.机器间通信等复杂问题,可以使没有并行处理或者分布式计算经验的工程师,也能很轻松地写出结构简单的.应用于成百上千台机器处理大规模数据的并行分布式程序. Hadoop…
大数据学习笔记4 - Hadoop的优化与发展(Hadoop 2.0)
前面介绍了Hadoop核心组件HDFS和MapReduce,Hadoop发展之初在架构设计和应用性能方面仍然存在不足,Hadoop的优化与发展一方面体现在两个核心组件的架构设计改进,一方面体现在Hadoop生态系统其他组件的不断丰富.此文介绍Hadoop2.0中添加的新特性. 一.HDFS 2.0新特性 这对HDFS的改进,HDFS 2.0主要增加了HDFS HA 以及HDFS联邦等新特性. (一)HDFS HA HA即High Availability,用于解决HDFS 1.0中的单点故障问题…
一起学Hadoop——MapReduce原理
一致性Hash算法. Hash算法是为了保证数据均匀的分布,例如有3个桶,分别是0号桶,1号桶和2号桶:现在有12个球,怎么样才能让12个球平均分布到3个桶中呢?使用Hash算法的做法是,将12个球从0开始编号,得到这样的一个序列:0,1,2,3,4,5,6,7,8,9,10,11.将这个序列中的每个值模3,不管数字是什么,得到的结果都是0,1,2,不会超过3,将结果为0的数字放入0号桶,结果为1的数子放入1号桶,结果为2的数字放入2号桶,12个球就均匀的分布到3个桶中,0,3,6,9,…
【Big Data - Hadoop - MapReduce】hadoop 学习笔记:MapReduce框架详解
开始聊MapReduce,MapReduce是Hadoop的计算框架,我学Hadoop是从Hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能是我做技术研究的思路有关,我开始学习某一套技术总是想着这套技术到底能干什么,只有当我真正理解了这套技术解决了什么问题时候,我后续的学习就能逐步的加快,而学习hdfs时候我就发现,要理解hadoop框架的意义,hdfs和mapreduce是密不可分,所以当我写分布式文件系统时候,总是感觉自己的理解肤浅…
Hadoop MapReduce流程及容错
shuffle流程 输入分片(input split):在进行map计算之前,mapreduce会根据输入文件计算输入分片(input split),每个输入分片(input split)针对一个map任务,输入分片(input split)存储的并非数据本身 map阶段:就是程序员编写好的map函数了,因此map函数效率相对好控制,而且一般map操作都是本地化操作也就是在数据存储节点上进行: combiner阶段:combiner阶段是程序员可以选择的,combiner其实也是一种reduce…
Hadoop MapReduce编程 API入门系列之计数器(二十七)
不多说,直接上代码. MapReduce 计数器是什么? 计数器是用来记录job的执行进度和状态的.它的作用可以理解为日志.我们可以在程序的某个位置插入计数器,记录数据或者进度的变化情况. MapReduce 计数器能做什么? MapReduce 计数器(Counter)为我们提供一个窗口,用于观察 MapReduce Job 运行期的各种细节数据.对 MapReduce 性能调优很有帮助,MapReduce 性能优化的评估大部分都是基于这些 Counter 的数值表现出来的. MapRe…
Hadoop MapReduce编程 API入门系列之wordcount版本1(五)
这个很简单哈,编程的版本很多种. 代码版本1 package zhouls.bigdata.myMapReduce.wordcount5; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable…