(转载)有关反演和gcd】的更多相关文章

tips : 积性函数 F (n) = Π F (piai ) 若F (n), G (n)是积性函数则 F (n) * G (n) Σd | n F (n) 是积性函数 n = Σd | n  φ (d) 1 = Σd | n  μ (d) Σgcd (i, n) = 1 i = n * φ (n) / 2 Problem1 F (n) = Σ1<= i <= n gcd(i, n), n <= 1000000 Sol 枚举结果 F (n) = Σd | n d * Σgcd (i, n…
首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1 5 1 1 5 1 5 2 Sample Output 14 3 HI…
Luogu3455:莫比乌斯反演进行GCD计数 莫比乌斯反演就是用来解决这一类问题的,通常f函数是要求的那个,F函数是显然的 这样利用F的结果就可以推出来f的结果 在计算结果的时候整除分快儿一下就可以很快了 #include<cstdio> #include<algorithm> using std::min; ; int cnt; long long ans; bool vis[maxn]; int mu[maxn],sum[maxn]; long long prim[maxn]…
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4119 依然是三维空间内求(1,1,1)~(a,b,c)能看到的整点数,平移一下转化成(0,0,0)~(a-1,b-1,c-1)就和前一题就一样了 还是莫比乌斯反演求gcd(a,b,c)=1的组数,公式还是sigma{u(d) * ((a/d+1) * (b/d+1) * (c/d+1) - 1)} 但直接暴力会T...所以加了分块优化...因为当a/d,b/d,c/d的值保持…
整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需要更加数学一点: \[\sum_{k=1}^{n}\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=k]\ \ \ \ \ (k\in\text{素数集合})\] 按照套路我们转化为: \[\sum_{k=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{k}\r…
没想到NOI竟然还有这种数学题,看来要好好学数论了…… 网上的题解: 完整的结题报告: 首先我们需要知道一个知识,对于坐标系第一象限任意的整点(即横纵坐标均为整数的点)p(n,m),其与原点o(0,0)的连线上除过原点整点的个数为gcd(n,m).其他象限上个数则为gcd(abs(n),abs(m)),这里的gcd(a,b)是指a与b的最大公约数(Greastest Common Divisor),abs(a)是指数a的绝对值.证明:考虑在op上最小的一个整点(x,y),这里的最小是指横纵坐标绝…
## 本蒟蒻的小整理qwq--持续更新(咕咕咕) 数据结构 数据结构 知识点梳理 数据结构--线段树 推荐yyb dalao的总结--戳我 以后维护线段树还是把l,r写到struct里面吧,也别写len了,调试不好调qwq 初始化和叶节点初始化不太一样qwq,有的需要统一初始化的就一定注意不要写到if(l==r)里面qwq 求区间最大子段和 例题:codevs动态最大子段和 维护区间和,区间前缀最大子段和,区间后缀最大子段和,区间最大子段和.然后合并.(注意这种跨左右子树还有可能会有贡献的线段树…
题意:f为Fibnacci数列.求$\prod_{1<=i<=n,1<=j<=m} f[gcd(i,j)]$. n,m<=1e6. 标程: #include<bits/stdc++.h> using namespace std; typedef long long ll; ; ; int f[N],prime[N],tot,F[N],ans,p[N],n,m,nxt,u[N],fi[N]; int ksm(int x,int y) { ; ) ) res=(ll)…
转载自An_Account大佬 提示:别用莫比乌斯反演公式,会炸的 只需要记住: [gcd(i,j)=1]=∑d∣gcd(i,j)μ(d)[gcd(i,j)=1]=\sum_{d|gcd(i,j)}\mu(d)[gcd(i,j)=1]=d∣gcd(i,j)∑?μ(d) 证明?其实很简单. μ\muμ函数有个性质 ∑d∣nμ(d)=[d=1]\sum_{d|n}\mu(d)=[d=1]d∣n∑?μ(d)=[d=1] 将ddd替换成gcd(i,j)gcd(i,j)gcd(i,j)就是上面的那个暂且可…
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入样例#1: 4 输出样例#1: 4 说明 对于样例\((2,2),(2,4),(3,3),(4,2)\) \(1<=N<=10^7\) 来源:bzoj2818 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. Solution 方法1:莫比乌斯反演,方法和yy的gcd一样 方法2:…