spark概论】的更多相关文章

基本概念 RDD spark最大的亮点是提出RDD(Resilient Distributed Dataset)的概念,也就是可伸缩的分布式数据集合,本身只读,可恢复.spark本身不做物理储存,通过保存足够的信息去实际的储存中计算出RDD RDD只要通过四种途径获取: 1.从共享的文件系统,比如HDFS 2.在驱动程序里的并行scala集合(例如数组),会发到多个节点上 3.从已存在的RDD转换 4.通过改变现有的RDD持久性.rdd是一个懒散,短暂的. 改变一个RDD的持久化通过两个动作:…
一.概述 1.轻:(1)采用语言简洁的scala编写:(2)利用了hadoop和mesos的基础设施   2.快:spark的内存计算.数据本地性和传输优化.调度优化,使其在迭代机器学习,ad-hoc query.图计算等方面是hadoop的MapReduce.hive和Pregel无法比拟的   3.灵: (1)实现层:完美演绎了Scala trait动态混入策略(如可更换的集群调度器.序列化库): (2)原语层:允许款站新的数据算子(operator).新的数据源.新的language bi…
第一 概论 1.spark的特点 适用多种不同分布式平台的场景,包括批处理,迭代算法,交互式查询,流处理: spark提供了python,scale,java等接口 2.spark的组件 spark的底层组件包括:独立调度器,Hadoop YARN,Apache Mesos spark的内核包括:任务调度,内存管理,错误恢复,RDD spark的顶层包括:spark sql,spark streaming,mlib,graphx 第二 环境搭建 1.说明: spark是用scale语言编写的:运…
SparkR(R on Spark)编程指南 Spark  2015-06-09 28155  1评论 下载为PDF    为什么不允许复制 关注iteblog_hadoop公众号,并在这里评论区留言并且留言点赞数排名前5名的粉丝,各免费赠送一本<大数据时代的算法:机器学习.人工智能及其典型实例>,活动截止至3月21日19:00,心动不如行动. 文章目录 1 概论 2 SparkR DataFrames 2.1 从SparkContext和SQLContext开始 2.2 创建DataFram…
SparkR(R on Spark)编程指南 Spark  2015-06-09 28155  1评论 下载为PDF    为什么不允许复制 关注iteblog_hadoop公众号,并在这里评论区留言并且留言点赞数排名前5名的粉丝,各免费赠送一本<大数据时代的算法:机器学习.人工智能及其典型实例>,活动截止至3月21日19:00,心动不如行动. 文章目录 1 概论 2 SparkR DataFrames 2.1 从SparkContext和SQLContext开始 2.2 创建DataFram…
本文翻译之cloudera的博客,本系列有两篇,第二篇看心情了 概论 当我们理解了transformation,action和rdd后,我们就可以写一些基础的spark的应用了,但是如果需要对应用进行调优就需要了解spark的底层执行模型,理解job,stage,task等概念.   本文你将会了解spark程序是怎么在机器上执行的,同时也学到一些实用的建议关于什么样的执行模型可以提高程序效率 Spark如何执行应用 一个spark程序包括一个driver进程和多个分散在集群节点上的execut…
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏…
摘要: 1.RDD的五大属性 1.1 partitions(分区) 1.2 partitioner(分区方法) 1.3 dependencies(依赖关系) 1.4 compute(获取分区迭代列表) 1.5 preferedLocations(优先分配节点列表) 2.RDD实现类举例 2.1 MapPartitionsRDD 2.2 ShuffledRDD 2.3 ReliableCheckpointRDD 3.RDD可以嵌套吗? 内容: 1.RDD的五大属性 1.1partitions(分区…
最近迷上了spark,写一个专门处理语料库生成词库的项目拿来练练手, github地址:https://github.com/LiuRoy/spark_splitter.代码实现参考wordmaker项目,有兴趣的可以看一下,此项目用到了不少很tricky的技巧提升性能,单纯只想看懂源代码可以参考wordmaker作者的一份简单版代码. 这个项目统计语料库的结果和执行速度都还不错,但缺点也很明显,只能处理GBK编码的文档,而且不能分布式运行,刚好最近在接触spark,所以用python实现了里面…
个人主页:http://www.linbingdong.com 简书地址:http://www.jianshu.com/p/a7f75b868568 简介 本文主要记录如何安装配置Hive on Spark,在执行以下步骤之前,请先确保已经安装Hadoop集群,Hive,MySQL,JDK,Scala,具体安装步骤不再赘述. 背景 Hive默认使用MapReduce作为执行引擎,即Hive on mr.实际上,Hive还可以使用Tez和Spark作为其执行引擎,分别为Hive on Tez和Hi…
[TOC] 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值.最近一个实时消费者处理任务,在使用spark streaming进行实时的数据流处理时,我需要将计算好的数据更新到hbase和mysql中,所以本文对spark操作hbase和mysql的内容进行总结,并且对自己踩到的一些坑进行记录. Spark Streaming持久化设计模式 DStreams输出操作 print:打印driver结点上每个Dstream…
[TOC] Spark简介 整体认识 Apache Spark是一个围绕速度.易用性和复杂分析构建的大数据处理框架.最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一. Spark在整个大数据系统中处于中间偏上层的地位,如下图,对hadoop起到了补充作用: 基本概念 Fork/Join框架是Java7提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架. 第一步分割任务.首先我们需…
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 一.传统方式 这种方式就是常用的TableInputFormat和TableOutputFormat来读写hbase,如下代码所示 简单解释下,用sc.newAPIHadoopRDD根据conf中配置好的scan来从Hbase的数据列族中读取包含(ImmutableBytesWritable, Result)的RDD, 随后取出rowkey和value的键值对儿利用StatCounter进行一…
一.Spark简介: 以下是百度百科对Spark的介绍: Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载. Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架.与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集…
Atitit.研发团队与公司绩效管理的原理概论的attilax总结 1. 四个理念 1 1.1. 绩效管理的三个目的.四个环节.五个关键2 1.2. 绩效目标smart2 2. 考核对象2 3. 绩效管理模式2 3.1.1. 德能勤绩2 3.2. 6.2 检查评比2 3.3. 6.3 共同参与2 3.4. 6.4 自我管理2 4. 绩效实施流程 2 5. 绩效方法(BSC.KPI及360度考核)3 5.1. kpi3 6. 第9章 绩效管理与绩效评价 9.1 绩效管理和绩效评价的基本概念 9.2…
Atitit.软件研发团队建设原理与概论 理论 培训 团队文化建设(内刊,ppt,书籍,杂志等) 梯队建设 技术储备人才的问题 团队建设--小红花评比. 团队建设--文化墙.doc 户外拓展 1. 团队建设游戏教练手册:全球众多著名机构优选课程(第二版)(职业培训师系列经典译著,世界探险组织御用培训教材 大型团队的热身游戏 小型团队的破冰游戏 建立信任游戏 沟通 解决问题型游戏 多团队解决问题型游戏 大总结 团队学习模型 游戏71 体验式学习 游戏72 EIAG模型 游戏73 学习区模型 游戏7…
Spark是一个内存迭代式运算框架,通过RDD来描述数据从哪里来,数据用那个算子计算,计算完的数据保存到哪里,RDD之间的依赖关系.他只是一个运算框架,和storm一样只做运算,不做存储. Spark程序可以运行在Yarn.standalone.mesos等平台上,standalone是Spark提供的一个分布式运行平台,分为master和worker两个角色. Standalone模式安装:只要修改一个文件即可 Spark-env.sh为: (master没有做HA) #指定JAVA_HOME…
Spark简介 视频教程: 1.优酷 2.YouTube 简介: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL.Spark Streaming.MLLib和GraphX等组件,也就是BDAS(伯克利数据分析栈),这些组件逐渐形成大数据处理一站式解决平台. Spark使用Scala语言实现,…
Spark是现在应用最广泛的分布式计算框架,oozie支持在它的调度中执行spark.在我的日常工作中,一部分工作就是基于oozie维护好每天的spark离线任务,合理的设计工作流并分配适合的参数对于spark的稳定运行十分重要. Spark Action 这个Action允许执行spark任务,需要用户指定job-tracker以及name-node.先看看语法规则: 语法规则 <workflow-app name="[WF-DEF-NAME]" xmlns="uri…
没用过IDEA工具,听说跟Eclipse差不多,sbt在Idea其实就等于maven在Eclipse.Spark运行在JVM中,所以要在Idea下运行spark,就先要安装JDK 1.8+ 然后加入Scala和Spark的依赖包就可以进行开发了,不要安装低版本的JDK. 先下载Idea的社区版 https://www.jetbrains.com/idea/download/download-thanks.html?platform=windows&code=IIC Scala.Spark环境 安…
在前一篇文章中,我们已经搭建好了Hadoop的群集,接下来,我们就是需要基于这个Hadoop群集,搭建Spark的群集.由于前面已经做了大量的工作,所以接下来搭建Spark会简单很多. 首先打开三个虚拟机,现在我们需要安装Scala,因为Spark是基于Scala开发的,所以需要安装Scala.在Ubuntu下安装Scala很简单,我们只需要运行 sudo apt-get install scala 就可以安装Scala了. 安装完成后运行scala -version可以看到安装的Scala的版…
初识spark,需要对其API有熟悉的了解才能方便开发上层应用.本文用图形的方式直观表达相关API的工作特点,并提供了解新的API接口使用的方法.例子代码全部使用python实现. 1. 数据源准备 准备输入文件: $ cat /tmp/in apple bag bag cat cat cat 启动pyspark: $ ./spark/bin/pyspark 使用textFile创建RDD: >>> txt = sc.textFile("file:///tmp/in"…
Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些…
在即时通信这个领域目前只找到一个XMPP协议,在其协议基础上还是有许多成熟的产品,而且是开源的.所以还是想在这个领域多多了解一下. XMPP协议:具体的概念我就不写了,毕竟这东西网上到处是.简单的说就是基于XML的一种协议.其解决了什么问题呢?就是给即时通讯制定了标准,大家只要遵守标准就可以完成即时通信的功能.有了标准的好处就是可以有各种不同的实现,大家在这个标准上发展自己的特长.而且还给即时通信提供了互联互通的基础.XMPP协议据网上说还是比较优秀的,表现就是google等大公司都在自己的即时…
本篇接着谈谈那些稍微复杂的API. 1)   flatMapValues:针对Pair RDD中的每个值应用一个返回迭代器的函数,然后对返回的每个元素都生成一个对应原键的键值对记录 这个方法我最开始接触时候,总是感觉很诧异,不是太理解,现在回想起来主要原因是我接触的第一个flatMapValues的例子是这样的,代码如下: val rddPair: RDD[(String, Int)] = sc.parallelize(List(("x01", 2), ("x02"…
本篇接着讲解RDD的API,讲解那些不是很容易理解的API,同时本篇文章还将展示如何将外部的函数引入到RDD的API里使用,最后通过对RDD的API深入学习,我们还讲讲一些和RDD开发相关的scala语法. 1)  aggregate(zeroValue)(seqOp,combOp)  该函数的功能和reduce函数一样,也是对数据进行聚合操作,不过aggregate可以返回和原RDD不同的数据类型,使用时候还要提供初始值. 我们来看看下面的用法,代码如下: val rddInt: RDD[In…
上一篇里我提到可以把RDD当作一个数组,这样我们在学习spark的API时候很多问题就能很好理解了.上篇文章里的API也都是基于RDD是数组的数据模型而进行操作的. Spark是一个计算框架,是对mapreduce计算框架的改进,mapreduce计算框架是基于键值对也就是map的形式,之所以使用键值对是人们发现世界上大部分计算都可以使用map这样的简单计算模型进行计算.但是Spark里的计算模型却是数组形式,RDD如何处理Map的数据格式了?本篇文章就主要讲解RDD是如何处理Map的数据格式.…
本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当作一个数组,这样的理解对我们学习RDD的API是非常有帮助的.本文所有示例代码都是使用scala语言编写的. Spark里的计算都是操作RDD进行,那么学习RDD的第一个问题就是如何构建RDD,构建RDD从数据来源角度分为两类:第一类是从内存里直接读取数据,第二类就是从文件系统里读取,当然这里的文件…
摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuffleManager 2 Shuffle操作问题解决 2.1 数据倾斜原理 2.2 数据倾斜问题发现与解决 2.3 数据倾斜解决方案 3 spark RDD中的shuffle算子 3.1 去重 3.2 聚合 3.3 排序 3.4 重分区 3.5 集合操作和表操作 4 spark shuffle参数调优…
PairRDDFunctions类提供了以下两个join接口,只提供一个参数,不指定分区函数时默认使用HashPartitioner;提供numPartitions参数时,其内部的分区函数是HashPartitioner(numPartitions) def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))] = self.withScope { //这里的defaultPartitioner 就是HashPartitioner,如果指定了HashPart…