结构推理网络:基于场景级与实例级目标检测 原文链接:https://arxiv.org/abs/1807.00119 代码链接:https://github.com/choasup/SIN Yong Liu, Ruiping Wang, Shiguang Shan, Xilin Chen. Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships. pu…
Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships 2018-09-07 20:38:10 pdf: http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Structure_Inference_Net_CVPR_2018_paper.pdf code:http://vipl.ict.a…
关键词:rotation-invariant face detection, rotation-in-plane, coarse-to-fine 核心概括:该篇文章为中科院计算所智能信息处理重点实验室VIPL课题组,邬书哲博士在CVPR2018上的论文.论文主要针对的是在不同平面角度下的人脸检测,主题思想可以概括为Progressive Calibration Networks(PCN), 即逐步校正不同角度的人脸. 已有方法:目前,针对平面角度的人脸检测主要有3种策略,即data augmen…
Fast Online Object Tracking and Segmentation: A Unifying Approach CVPR-2019 2019-03-11 23:45:12 Paper:https://arxiv.org/pdf/1812.05050 Project Page: http://www.robots.ox.ac.uk/~qwang/SiamMask/ Code(Test Only):https://github.com/foolwood/SiamMask Blog…
 Multiple Object Recognition With Visual Attention Google DeepMind  ICRL 2015 本文提出了一种基于 attention 的用于图像中识别多个物体的模型.该模型是利用RL来训练 Deep RNN,以找到输入图像中最相关的区域.尽管在训练的过程中,仅仅给出了类别标签,但是仍然可以学习定位并且识别出多个物体. Deep Recurrent Visual Attention Model 文中先以单个物体的分类为基础,再拓展到多个…
Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算是火了一把,在Google Deep Mind的主页上,更是许多关于此的paper,基本都发在ICML,AAAI,IJCAI等各种人工智能,机器学习的牛会顶刊,甚至是Nature,可以参考其官方publication page: https://www.deepmind.com/publicatio…
Capsules for Object Segmentation 2018-04-16  21:49:14 Introduction: ----…
相关链接 论文地址:https://arxiv.org/abs/1901.08043 论文代码:https://github.com/xingyizhou/ExtremeNet 概述 ExtremeNet是今年(2019)1月23号挂在arxiv上的目标检测论文,是至今为止检测效果最好的单阶段目标检测算法.思想借鉴CornerNet,使用标准的关键点估计网络检测目标关键点进而构造目标的预测框.ExtremeNet预测四个extreme point(顶.左.底.右)以及目标的中心点,如果这五个点满…
论文分析了one-stage网络训练存在的类别不平衡问题,提出能根据loss大小自动调节权重的focal loss,使得模型的训练更专注于困难样本.同时,基于FPN设计了RetinaNet,在精度和速度上都有不俗的表现 论文:Focal Loss for Dense Object Detection 论文地址:https://arxiv.org/abs/1708.02002 论文代码:https://github.com/facebookresearch/Detectron Introducti…
论文原址:https://arxiv.org/pdf/1904.08900.pdf github:https://github.com/princeton-vl/CornerNet-Lite 摘要 基于关键点模式进行目标检测是一种新的方法,他并不需要依赖于anchor boxes,是一种精简的检测网络,但需要大量的预处理才能得到较高的准确率.本文提出CornerNet-Lite,是CornerNet两种变形的组合,一个是CornerNet-Saccade,基于attention机制,从而并不需要…