题意 小 \(\mathrm{C}\) 很喜欢二维染色问题,这天他拿来了一个 \(w × h\) 的二维平面 , 初始时均为白色 . 然后他在上面设置了 \(n\) 个关键点 \((X_i , Y_i)\) , 对于每个关键点他会选择进行下列操作的一个 : 将 \(x > X_i\) 的部分染成黑色. 将 \(x < X_i\) 的部分染成黑色. 将 \(y > Y_i\) 的部分染成黑色. 将 \(y < Y_i\) 的部分染成黑色. 现在让你 , 最大化所有操作结束之后白色部分…
AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图 链接 AtCoder 大意 在数轴上放上n个点,点i可能的位置有\(x_i\)或者\(y_i\) 思路 首先最大值最小,考虑二分答案. 如何check呢. 只有两个坐标,考虑2-sat. 可是边有点多,存不下来,考虑线段树优化建图. 如何建图. 先按照做坐标排序,我们有两个点的范围 [id[x]-mid,id[x]+mid],[id[y]-mid,id[y]+mid]. 这个显然是z选了,区…
题意: n个人抢m个凳子,第i个人做的位置必须小于li或大于ri,问最少几个人坐不上. 这是一个二分图最大匹配的问题,hall定理可以用来求二分图最大匹配. 关于hall定理及证明,栋爷博客里有:http://blog.csdn.net/werkeytom_ftd/article/details/65658944 可以推出答案为$max\{|x|-Γ(X)\}$,x为左侧点的一个子集,Γ(X)为这些点能到达的右侧点的集合. 证明: 因为二分图有完美匹配的充要条件是对于所有的x都有Γ(X)>=|x…
Problem Statement We have a sandglass consisting of two bulbs, bulb A and bulb B. These bulbs contain some amount of sand. When we put the sandglass, either bulb A or B lies on top of the other and becomes the upper bulb. The other bulb becomes the l…
Link: ARC063 传送门 C: 将每种颜色的连续出现称为一段,寻找总段数即可 #include <bits/stdc++.h> using namespace std; ,len; ]; int main() { scanf();len=strlen(s+); ;i<=len;i++) ]) cnt++; printf(); ; } Problem C D: 可以发现对于每一个点的最优解$res_i$为: $max(w_j)-w_i(j>i)$ 找到最小的$res_i$的个…
题目 分析 \(s[i]\)表示a前缀和. 设\(f[i]\)表示做完了1~i的友谊颗粒的最优值(不一定选i),那么转移方程为 \[f[i]=max\{f[i-1],max\{f[j]-s[i]+s[j]+\dfrac{(i-j)(i-j+1)}{2}\}\}\],用斜率优化来处理这个. 类似的,设\(g_i\)表示做完了i~n的友谊颗粒的最优值(不一定选i), 将a翻转,像f一样做一遍,再将g翻转就可以了. 对于询问(p,x),如果我们不选择p,那么答案就是\(f[i-1]+g[i+1]\)…
题目传送门:https://arc068.contest.atcoder.jp/tasks/arc068_c 题目翻译 直线上有\(0-m\)这\(m+1\)个点,一共有\(m\)辆火车.第\(i\)辆火车只会在\(i\)的倍数点上停靠,所有车都从\(0\)号点出发. 一共有\(n\)个商品,第\(i\)个商品只会在\(l_i-r_i\)号点出售,问你对于每辆火车,在可以停靠的站里,可以买到的商品种类数. \(m\leqslant 10^5,n\leqslant 3*10^5\). 题解 对于长…
题目传送门:https://arc073.contest.atcoder.jp/tasks/arc073_c 题目翻译 给你\(N\)个袋子,每个袋子里有俩白球,白球上写了数字.对于每一个袋子,你需要把袋子里的球染色成一个红色和一个蓝色,求出\((R_{mx}-R_{mn})*(B_{mx}-B_{mn})\)的最小值.其中\(R_{mx}\)表示红球的最大值,\(R_{mn}\)表示红球的最小值.蓝球同理.\(N\leqslant 2*10^5\) 题解 分情况讨论.假设最小值是红色,最大值是…
题目传送门:https://arc063.contest.atcoder.jp/tasks/arc063_c 题目翻译 给你一个树,上面有\(k\)个点有权值,问你是否能把剩下的\(n-k\)个点全部填上权值,使得每条边链接的两个点权值相差\(1\),如果可以做到需要输出任意一组方案. 题解 我们考虑每条边权值为\(1\)或\(-1\),那么相当于黑白染色一样,所有点权值的奇偶性也都是确定的.如果与读入的\(k\)个点中某个点相冲突了就\(GG\).另外每个点的取值范围都可以转化成一段区间\([…
题目传送门:https://arc074.contest.atcoder.jp/tasks/arc074_d 题目大意: 给定一个\(H×W\)的网格图,o是可以踩踏的点,.是不可踩踏的点. 现有一人在S处,向T移动,若此人现在在\((i,j)\)上,那么下一步他可以移动到​\((i,k)\)或\((k,j)\)上,\(k\)任意 问最少需要将多少个o改成.,可以使这个人无法从S到达T,输出最少需要更改的数目:如果无论如何都不能使这个人无法从S到T,则输出\(-1\) 这个模型就是最小割啊--我…