P2054 [AHOI2005]洗牌 扩展欧拉定理求逆元 $1 2 3 4 5 6$$4 1 5 2 6 3$$2 4 6 1 3 5$$1 2 3 4 5 6$ 手推一下样例,你就会发现是有规律的: 位置->位置 $1->2$ $2->4$ $3->6$ $4->1$ $5->3$ $6->5$ 规律显然,位于位置$x$的数,进行一次洗牌操作位置就会变成$x*2\%(n+1)$ 那么位于$x$的数,经过$m$次操作,位置就会变成$x*2^m\%(n+1)$ 那么…
洛谷题目传送门 来个正常的有证明的题解 我们不好来表示某时刻某一个位置是哪一张牌,但我们可以表示某时刻某一张牌在哪个位置. 设数列\(\{a_{i_j}\}\)表示\(i\)号牌经过\(j\)次洗牌后的位置,我们试着来递推一下 首先,如果此刻牌在上面一叠,显然\(a_{i_{j+1}}=2a_{i_j}\) 接着,如果这张牌在下面一叠,那么\(a_{i_{j+1}}=2(a_{i_j}-\frac n2)-1=2a_{i_j}-(n+1)\),应该也很好推出来 写在一起,观察一下 \[a_{i_…
题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打发长途旅行中的无聊时间.玩了几局之后,大家觉得单纯玩扑克牌对于像他们这样的高智商人才来说太简单了.有人提出了扑克牌的一种新的玩法. 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取下面一叠的第一张作为新的一叠的第一张,然后取上面一叠的第一张作为新的一叠的第二张,再取…
[luogu P2054] [AHOI2005]洗牌 题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打发长途旅行中的无聊时间.玩了几局之后,大家觉得单纯玩扑克牌对于像他们这样的高智商人才来说太简单了.有人提出了扑克牌的一种新的玩法. 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取下面一叠的第一张作为新的一叠的第…
P2054 [AHOI2005]洗牌 题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打发长途旅行中的无聊时间.玩了几局之后,大家觉得单纯玩扑克牌对于像他们这样的高智商人才来说太简单了.有人提出了扑克牌的一种新的玩法. 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取下面一叠的第一张作为新的一叠的第一张,然后取上面…
题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打发长途旅行中的无聊时间.玩了几局之后,大家觉得单纯玩扑克牌对于像他们这样的高智商人才来说太简单了.有人提出了扑克牌的一种新的玩法. 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取下面一叠的第一张作为新的一叠的第一张,然后取上面一叠的第一张作为新的一叠的第二张,再取…
[BZOJ1965][AHOI2005]洗牌(数论) 题面 BZOJ 洛谷 题解 考虑反过来做这个洗牌的操作,假定当前牌是第\(l\)张. 因为之前洗的时候考虑了前一半和后一半,所以根据\(l\)的奇偶性可以判定在前一半还是后一半,那么\(l/2\)就是在这一半里面在它前面的张数,这样子很容易就可以还原回去.暴力就有\(70\)分了. #include<iostream> #include<cstdio> using namespace std; #define ll long l…
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 LCP 长度数组 \(p\). 数据范围:\(1\le |a|,|b|\le 2\times 10^7\). 蒟蒻语 别的题解为什么代码那么长.讲解那么复杂?蒟蒻不解,写篇易懂一点的,希望没有错误理解. 注意:蒟蒻的下标是从 \(0\) 开始的. 蒟蒻解 定义 \(z(i) (i>0)\):后缀 \(…
BZOJ原题链接 洛谷原题链接 我们可以倒着来\(DP\). 设\(f[i][j]\)表示剩余\(i\)个人,从庄家数起第\(j\)个人的胜率,设当前枚举到第\(k\)张牌,该情况下这一轮淘汰的位置为\(x\),则有状态转移方程: \(\qquad\qquad f[i][j] = f[i][j] + \dfrac{f[i - 1][i - x + j]}{m}, (x > j)\) \(\qquad\qquad f[i][j] = f[i][j] + \dfrac{f[i - 1][j - x]…
容易发现,对于牌堆里第x张牌,在一次洗牌后会变成2*x%(n+1)的位置. 于是问题就变成了求x*2^m%(n+1)=L,x在[1,n]范围内的解. 显然可以用扩展欧几里得求出. # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include &l…