P4139 上帝与集合的正确用法】的更多相关文章

P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作"α"."α"被定义为"元"构成的集合.容易发现,一共有两种不同的"α". 第三天, 上帝又创造了一个新的元素,称作"β"."β"被定义为"α"构成的集合.容…
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”. 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ”. 如果按照这样下去…
上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p \] 数据范围:\(1\le T\le 1000\),\(1\le p\le 10^7\). 这篇题解主要是给自己看的,因为小蒟蒻从未见过这种骚操作. 首先这个式子虽是无限的,但是答案是固定的. 先来几个引理 \[a^{\varphi(p)}\equiv1\pmod p \] \[a^b\equi…
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”. 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ”. 如果按照这样下去,上帝创造的第四种元素将会有655…
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的:  第一天,上帝创造了一个世界的基本元素,称做“元”.  第二天,上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”.  第三天,上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”.  第四天,上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ”.  如果按照这样下去,上帝创造的第四种元素将会有65…
本题是欧拉定理的应用.我这种蒟蒻当然不知道怎么证明啦! 那么我们就不证明了,来直接看结论: ab≡⎧⎩⎨⎪⎪ab%φ(p)abab%φ(p)+φ(p)gcd(a,p)=1gcd(a,p)≠1,b<ϕ(p)gcd(a,p)≠1,b≥ϕ(p)(modp) 或者 ab≡⎧⎩⎨⎪⎪ab%ϕ(p)           gcd(a,p)=1ab                  gcd(a,p)≠1,b<ϕ(p)ab%ϕ(p)+ϕ(p)    gcd(a,p)≠1,b≥ϕ(p)       (mod pa…
正解:拓展欧拉定理 解题报告: 首先放上拓欧公式? if ( b ≥ φ(p) )  ab ≡ ab%φ(p)+φ(p)(mod p)else ab≡ab mod φ(p) (mod p) 首先利用扩展欧拉定理. 原式=2(剩余数%φ(p)+φ(p)) 而 剩余数% φ(p)又可以进行分解,所以这个过程可以用递归实现. 注意边界条件:当p=1时,余数自然为0. 然后就最最最不用动脑子的思路啊,我们一路做下去做下去,一直膜膜膜膜膜%,总有一天φ(p)是1了然后此时mod一定是0就可以一路再返回回去…
题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$ 题解:扩展欧拉定理,求出$\varphi(p)$即可.因为$2^{2^{2^{\dots}}}>>p$,所以其实每一次算的时候都可以直接加上$\varphi(p)$,不用判断 卡点:无 C++ Code: #include <cstdio> namespace Math { const int N = 1e7 + 1; int pri[N], ptot, phi[N]; bool notp[…
题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过.... $Code$ #include<cstdio> #include<algorithm> using namespace std; ; int T,p; int phi[lim]; void init_phi() { phi[]=; ;i<=lim;i++) phi[i]…
本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\(b<\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)}(mod\ p)\) \(b\)和\(p\)可以不互质 然后这题就简单了... #include<iostream> #include<cstring> #include<…