1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物体识别和物体定位的综合,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置. 为了完成这两个任务,目标检测模型分为两类.一类是two-stage,将物体识别和物体定位分为两个步骤,分别完成,这一类的典型代表是R-CNN, fast R-CNN, faster-RCNN家族.他们识别…
计算机视觉中的目标检测,因其在真实世界的大量应用需求,比如自动驾驶.视频监控.机器人视觉等,而被研究学者广泛关注.   上周四,arXiv新出一篇目标检测文献<Object Detection in 20 Years: A Survey>,其对该领域20年来出现的技术进行了综述,这是一篇投向PAMI的论文,作者们review了400+篇论文,总结了目标检测发展的里程碑算法和state-of-the-art,并且难能可贵的对算法流程各个技术模块的演进也进行了说明,还深入到目标检测的特定领域,如人…
注:本文来自机器之心的PaperWeekly系列:万字综述之生成对抗网络(GAN),如有侵权,请联系删除,谢谢! 前阵子学习 GAN 的过程发现现在的 GAN 综述文章大都是 2016 年 Ian Goodfellow 或者自动化所王飞跃老师那篇.可是在深度学习,GAN领域,其进展都是以月来计算的,感觉那两篇综述有些老了.最近发现有一篇最新的 GAN 综述论文(How Generative Adversarial Networks and Their Variants Work: An Over…
1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公式,也就是神经网络的前向算法.我们一般使用现成的网络,如inceptionV4,mobilenet等. 定义loss,选择优化器,来让loss最小 对数据进行迭代训练,使loss到达最小 在测试集或者验证集上对准确率进行评估 下面我们来看深度学习模型训练中遇到的难点及如何解决 2 模型训练难点及解决…
前言 在深度学习的应用过程中,数据的重要性不言而喻.继上篇介绍了数据合成(个人认为其在某种程度上可被看成一种数据增强方法)这个主题后,本篇聚焦于数据增强来介绍几篇杰作! (1)NanoNets : How to use Deep Learning when you have Limited Data (2)Data Augmentation | How to use Deep Learning when you have Limited Data—Part 2 网上也已经有了上述文章的翻译,推荐…
Below are some investigation resources for synthetic datasets: 1. Synthetic datasets vs. real images for computer vision algorithm evaluation? https://www.researchgate.net/post/Synthetic_datasets_vs_real_images_for_computer_vision_algorithm_evaluatio…
date: 2018-8-01 14:22:17title: swoft| 源码解读系列二: 启动阶段, swoft 都干了些啥?description: 阅读 sowft 框架源码, 了解 sowft 启动阶段的那些事儿 小伙伴刚接触 swoft 的时候会感觉 压力有点大, 更直观的说法是 难. 开发组是不赞成 难 这个说法的, swoft 的代码都是 php 实现的, 而 php 又是 世界上最好的语言, swoft 的代码阅读起来是很轻松的. 之后开发组会用 系列源码 解读文章, 深入解析…
CVPR2020论文介绍: 3D 目标检测高效算法 CVPR 2020: Structure Aware Single-Stage 3D Object Detection from Point Cloud 随着CVPR2020入选论文的曝光,一篇关于自动驾驶的文章被录用,该论文提出了一个通用.高性能的自动驾驶检测器,首次实现3D物体检测精度与速度的兼得,有效提升自动驾驶系统安全性能.目前,该检测器在自动驾驶领域权威数据集KITTI BEV排行榜上排名第三.论文是如何解决物体检测难题的? View…
这是一只AI生出的小AI. 谷歌大脑的Quoc Le团队,用神经网络架构搜索 (NAS) ,发现了一个目标检测模型.长这样: △ 看不清请把手机横过来 它的准确率和速度都超过了大前辈Mask-RCNN:也超过了另外两只行业精英:FPN和SSD. 模型叫做NAS-FPN.大佬Quoc Le说,它的长相完全在想象之外,十分前卫: △ 喜讯发布一日,已收获600颗心 AI的脑洞果然和人类不一样.对比一下,目标检测界的传统方法FPN (特征金字塔网络) 长这样: 谷歌大脑说,虽然网络架构搜索 (NAS)…
来源 | Towards Data Science 整理 | 磐石 就在几天前,Google AI在Kaggle上推出了一项名为Open Images Challenge的大规模目标检测竞赛.当今计算机视觉社区已经很长一段时间没有进行如此新的大规模竞赛,这对视觉研究者来说绝对是一个令人振奋的消息. 连续多年ImageNet一直是计算机视觉领域的"黄金标准型"竞赛,并且吸引了大量团队每年都参与竞争,以获得在ImageNet数据集上最低的错误率.同时,深度学习技术的突破更是使得图像识别任务…