题目大意 有\(n\)种颜色的球,第\(i\)种有\(a_i\)个.设\(m=\sum a_i\).你要把这\(m\)个小球排成一排.有\(q\)个询问,每次给你一个\(x\),问你有多少种方案使得相邻的小球同色的对数为\(x\). \(n\leq 10000,m\leq 200000\) 题解 我们考虑把这些小球分段,每段内所有小球颜色相同,但相邻两段的小球颜色可以相同. 设第\(i\)种颜色有\(b_i\)段,那么分\(j\)段的方案数是\(\frac{(\sum b_i)!}{\sum(b…
[Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT) 题面 给出一个\(n\)个点\(m\)条边的有向图(可能有环),走每条边需要支付一个价格\(c_i\),需要的时间为\([1,T]\)中随机的整数,时间为\(j\)的概率为\(p_{i,j}\).从\(1\)出发走到\(n\),如果到\(n\)的时间超过\(T\),就需要再支付\(X\).找出一条路径,使得支付钱数的期望值最小.输出最小期望. \(n \leq 50,m \leq 100,T \…
题目 令\(dp_{i,j}\)表示从点1到达点i,路径长度为j的方案数.转移为\(dp_{i,j}=\sum_{(i,v,w)\in E}dp_{v,j-w}p_{i,v,w}\). 显然只能从长度小的转移到长度大的,而且转移是一个自己和自己卷积的形式.考虑分治FFT,当分治到\((l,r)\)时,考虑\(dp_{i,t1} \to dp_{j,t2}(l \leq t1 \leq mid,mid < t2 \leq r)\)的转移.枚举i和j(i,j之间存在边),把\(dp_{i,t1}(l…
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5730 Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n beautiful shells contains the most sincere feeling for my best lover Arrietty, but…
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 写在前面 一些约定 循环卷积 DFT卷积的本质 Bluestein's Algorithm 例题 分治FFT 例题 FFT的弱常数优化 复杂算式中减少FFT次数 例题 利用循环卷积 小范围暴力 例题 快速幂乘法次数的优化 FFT的强常数优化 DF…
CTT=清华集训 题目大意 有\(n\)个点,点权为\(a_i\),你要连接一条边,使该图变成一颗树. 对于一种连边方案\(T\),设第\(i\)个点的度数为\(d_i\),那么这棵树的价值为: \[ val(T)=(\prod_{i=1}^na_i^{d_i}d_i^m)(\sum_{i=1}^nd_i^m) \] 求所有生成树的价值和\(\bmod 998244353\) \(n\leq 30000,m\leq 30\) 题解 很容易想到prufer序列 先把式子化简: \[ \begin{…
题目描述 有一个\(n\)个元素的置换,你要选择\(k\)个元素,问有多少种方案满足:对于每个轮换,你都选择了其中的一个元素. 对\(998244353\)取模. \(k\leq n\leq 152501\) 题解 吐槽 为什么一道FFT题要把\(n\)设为\(150000\)? 解法一 先把轮换拆出来. 直接DP. 设\(f_{i,j}\)为前\(i\)个轮换选择了\(j\)个元素,且每个轮换都选择了至少一个元素的方案数. \[ f_{i,j}=\sum_{k=1}^{a_i}f_{i-1,j…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方案数 == 随便连方案数 - 不连通方案数 不连通方案数就和很久之前做过的“地震后的幻想乡”一样,枚举一个连通的点集,其中需要一直包含一个“划分点”保证不重复:其余部分随便连.注意还有从 i 个点里选 j 个点作为连通点集的那个组合数. \( dp[i]=2^{C^{2}_{i}} - \sum\l…
题目 Source http://www.tsinsen.com/A1493 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一样, 那么这两个方案就是不同的, 否则就是相同的. 现在你需要求出一共有多…
传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中有不同的队友. 这年头真是--分治FFT都开始烂大街了-- 我们来推一推吧 这显然是一个1d1d的DP,用f[i]表示i名队员的方案数 f[i]=∑j=0i−1f[i−j−1]∗Cji−1 即i−1个人里面选j个和i组队(似乎类似strling数) 然后化一下简,便可得到 f[i]=(i−1)!∑j…