XTU 1250 Super Fast Fourier Transform】的更多相关文章

$2016$长城信息杯中国大学生程序设计竞赛中南邀请赛$H$题 排序,二分. 对$a$数组,$b$数组从小到大进行排序. 统计每一个$a[i]$作为较大值的时候与$b[i]$对答案的贡献.反过来再统计以$b[i]$为较大值时与$a[i]$对答案的贡献. 以前者举例说明: 观察这个:$⌊\sqrt {|a[i] - b[j]|}⌋ $,按照题目中给出的范围,这个东西最大只有$1000$. 也就是说,我们在计算一个$a[i]$与$b[j]$对答案的贡献时候,不用从$1$到$m$枚举$j$,因为肯定是…
湘潭邀请赛的一题,名字叫"超级FFT"最终暴力就行,还是思维不够灵活,要吸取教训. 由于每组数据总量只有1e5这个级别,和不超过1e6,故先预处理再暴力即可. #include<cstdio> #include<iostream> #include<cstdlib> #include<cstring> #include<string> #include<algorithm> #include<map>…
分析:因为加起来不超过1e6,所以最多有1000+个不同的数 做法:离散化搞就好了 #include <cstdio> #include <iostream> #include <ctime> #include <vector> #include <cmath> #include <map> #include <queue> #include <algorithm> #include <cstring&g…
实验要求: Objective: To further understand the well-known algorithm Fast Fourier Transform (FFT) and verify its effectiveness to calculate the discrete Fourier transform (DFT). Main requirements: Ability of programming with C, C++, or Matlab. Instruction…
前言 快速傅里叶变换(\(\text{Fast Fourier Transform,FFT}\) )是一种能在\(O(n \log n)\)的时间内完成多项式乘法的算法,在\(OI\)中的应用很多,是多项式相关内容的基础.下面从头开始介绍\(\text{FFT}\). 前置技能:弧度制.三角函数.平面向量. 多项式 形如\(f(x)=a_0+a_1x+a_2x^2+...+a_nx^n\)的式子称为\(x\)的\(n\)次多项式.其中\(a_0,a_1,...,a_n\)称为多项式的系数. 系数…
[OI向]快速傅里叶变换(Fast Fourier Transform) FFT的作用 ​ 在学习一项算法之前,我们总该关心这个算法究竟是为了干什么. ​ (以下应用只针对OI) ​ 一句话:求多项式乘法(当然它的实际用处很多) ​ 设多项式 ​ \(A(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n\) ​ \(B(x)=b_0+b_1x+b_2x^2+\ldots+b_mx^m\) ​ 我们想求 \(F(x)=A(x)B(x)=\sum\limits_{i=0}^n\sum…
写在前面的.. 感觉自己是应该学点新东西了.. 所以就挖个大坑,去学FFT了.. FFT是个啥? 挖个大坑,以后再补.. 推荐去看黑书<算法导论>,讲的很详细 例题选讲 1.UOJ #34. 多项式乘法 这是FFT最裸的题目了 FFT就是拿来求这个东西的 没啥好讲的,把板子贴一下吧.. #include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> #inc…
问题: 已知$A=a_{0..n-1}$, $B=b_{0..n-1}$, 求$C=c_{0..2n-2}$,使: $$c_i = \sum_{j=0}^ia_jb_{i-j}$$ 定义$C$是$A$,$B$的卷积,记作 $$C = A * B$$ 例如多项式乘法等. 朴素做法是按照定义枚举$i$和$j$,但这样时间复杂度是$O(n^2)$. 能不能使时间复杂度降下来呢? 点值表示法: 我们把$A$,$B$,$C$看作多项式. 即: $$A(x) = \sum_{i=0}^{n-1}a_ix^i…
1. 官方形象展示FFT:https://www.bilibili.com/video/av19141078/?spm_id_from=333.788.b_636f6d6d656e74.6 2. 讲解的不错:  https://blog.csdn.net/zb1165048017/article/details/80669105…
np.fft.fft import matplotlib.pyplot as plt import plotly.plotly as py import numpy as np # Learn about API authentication here: https://plot.ly/python/getting-started # Find your api_key here: https://plot.ly/settings/api Fs = 150.0; # sampling rate…
傅里叶级数 傅里叶在他的专著<热的解析理论>中提出,任何一个周期函数都可以表示为若干个正弦函数的和,即: \[f(t)=a_0+\sum_{n=1}^{\infty}(a_ncos(n\omega t)+b_nsin(n\omega t))\]其中\(\omega=\dfrac{2\pi}{T}\),\(T\)为函数的周期.\(a_n/b_n\)和\(n\)分别控制了正弦波的振幅与频率.这就是傅里叶级数的三角形式. 我们还可以用复指数形式1和积分2来表示傅里叶级数: \[ f(t)=\sum_…
原理 短时傅里叶变换(Short Time Fourier Transform, STFT) 是一个用于语音信号处理的通用工具.它定义了一个非常有用的时间和频率分布类, 其指定了任意信号随时间和频率变化的复数幅度. 实际上,计算短时傅里叶变换的过程是把一个较长的时间信号分成相同长度的更短的段, 在每个更短的段上计算傅里叶变换, 即傅里叶频谱. 短时傅里叶变换通常的数学定义如下: 其中, DTFT (Decrete Time Fourier Transform) 为离散时间傅里叶变换.  其数学公…
\(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一个人的自学能力锻炼到了极致\(qwq\) 好的,那我们就开始我们的飞飞兔\(FFT\)算法吧! 偷偷说一句,\(FFT\)的代码十分的短哦~并且如果你不喜欢看算法,你可以翻到最下面看心得哟! 写在前面 ·好多你不理解的地方在代码里就只有半行. ·三个引理中,只有消去引理跟算法的实现没有关系--消去引…
super fast sort algorithm in js sort algorithm Promise.race (return the fast one) Async / Await // chrome & fast sort 快速排序 // firefox & merge sort 归并排序 const superFastSort = (arr = []) => { let result = []; // Promise.race + Async / Await retur…
摘要:Fourier transform 是一个强大的概念,用于各种领域,从纯数学到音频工程甚至金融. 本文分享自华为云社区<使用 scipy.fft 进行Fourier Transform:Python 信号处理>,作者: Yuchuan. scipy.fft模块 傅立叶变换是许多应用中的重要工具,尤其是在科学计算和数据科学中.因此,SciPy 长期以来一直提供它的实现及其相关转换.最初,SciPy 提供了该scipy.fftpack模块,但后来他们更新了他们的实现并将其移到了scipy.f…
从傅里叶级数(Fourier series)到离散傅里叶变换(Discrete Fourier transform) 一. 傅里叶级数(FS) 首先从最直观的开始,我们有一个信号\(x(t)\)(满足Dirichelet条件),先假设它是周期的,为了研究它,我们使用级数将之展开,展开方法如下 \[x(t)=\sum_{k=0}^{\infty}a_ke^{jkw_0t}\tag{1} \] 现在问题就是如何求解\(a_k\).因为三角函数是正交系,即 \[\forall \theta_1 \ne…
最近在做Fourier Transform的内容,记录一下今天下午的成果. 本文代码全部自行编写,需要math and music项目完整工程可以在gayhub上获取.(现在还没弄完,就先不发了.) 概要 第一部分:     图像代码部分原理很直接,即极坐标参数方程的转化. 第二部分:   关于图像质点中心的问题,数学上需要使用复数与微积分的知识求出.     3b1b的原代码也是将质点的x-coordinate of center of mass图像直接用公式绘制.     但是本文使用的是暴…
Takuya Ooura: General Purpose FFT Package, http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html. Free C & FORTRAN libraries for computing fast DCTs (types II-III) in one, two or three dimensions, power of 2 sizes. 百度云分享:http://pan.baidu.com/s/1mgW0bo8 密码:…
我们大家都知道xor卷积有个很好的做法:FWT.FWT的变换形式是很好看的 // 说明一下Vector可以向量化运算,也可以当做数组来slice与concat Vector tf(A,2^n){ Vector A0=A.slice(0,2^n/2-1); Vector A1=A.slice(2^n/2,2^n-1); A0=tf(A0,2^n/2); A1=tf(A1,2^n/2); return concat(A0+A1,A0-A1); } Array itf(A,2^n){ Vector A…
模板题: 给定$n = 2^k$和两个序列$A_{0..n-1}$, $B_{0..n-1}$,求 $$C_i = \sum_{j \oplus k = i} A_j B_k$$ 其中$\oplus$是某一满足交换律的位运算,要求复杂度$O(nlogn)$. 快速沃尔什变换: 这是什么东西?有用吗?请参阅SDOI2017r2d1-cut. 看到这个大家是不是立刻想到了快速傅里叶变换? $$C_i = \sum_{j + k = i} A_j B_k$$ 我们来想想离散傅里叶变换的本质. $$\b…
FT of function $f(t)$ is to take integration of the product of $f(t)$ and $e^{-j\Omega t}$. By separating these two term into real and imaginary forms, the FT can be written as follow: $\begin{align*}\mathcal{F}\Big( f(t) \Big) &= \int_{-\infty}^{\in…
上次的博客有点模糊的说...我把思路和算法实现说一说吧... 思路 关于快速沃尔什变换,为了方便起见,我们采用线性变换(非线性变换不会搞). 那么,就会有一个变化前各数值在变换后各处的系数,即前一篇博文中的$f(i,j)$,表示线性变换中第$i$项到第$j$项的系数. 即 $$DWT(A)_i = \sum_{j=0}^{n-1} A_j * f(i,j)$$ 那么,我们既然要求$\oplus$卷积在变换后等价于乘积,就有 $$DWT(A)_i * DWT(B)_i = DWT(C)_i$$ 其…
这玩意最近经常出现额…… FFT解决的问题是\[C_{k}=\sum_{i+j=k}A_i \cdot B_j\] 其中\(A\).\(B\).\(C\)是三个列向量. 而FWHT是将\(\sum\)下面的\(+\)号换成位运算符时采用的方法. 做法与FFT相似,先将类似的系数表达式转换为点值表达式,点积之后再转换回来. 将系数表达式转换为点值表达式的函数叫\(tf\),反向的叫\(utf\). \(A_0\)表示\(A\)的前半部分(二进制位最高位为0),\(A_1\)表示\(A\)的后半部分…
https://hacks.mozilla.org/2017/08/inside-a-super-fast-css-engine-quantum-css-aka-stylo/?utm_source=dev-newsletter&utm_medium=email&utm_campaign=aug24-2017…
目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog @ Problem:传送门  原题目描述在最下面.  对给定的式子算解.  \(0\leq k\leq n+m,c_k=(\sum_{i+j=k}i\times j\times \sigma_{a_i,b_j}) mod\;998244353\),其中\(当且仅当a=b时,\sigma_{a_i,b_j}=1.\) Solution:  我们发现只有当\(a_i\)和\(b_j\)相…
为了在统一框架里分析周期信号与非周期信号,可以给周期信号也建立傅里叶变换. 有两种方法求周期信号的傅里叶变换: **1. 利用傅里叶级数进行构造 ** 对于周期信号\(x(t)\),其傅里叶级数展开式为: \[x(t) = \sum_{k = -\infty}^{+\infty}a_ke^{jkw_0t} \] 系数\(a_k\)表示为: 由于 说明周期性复指数信号的频谱是一个冲激,那么我们推广这个关系,可得: 表明:周期信号的傅里叶变换由一系列等间隔的冲激函数线性组合而成,每个冲激分别位于信号…
dennis gabor 题目:从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换 本文是边学习边总结和摘抄各参考文献内容而成的,是一篇综述性入门文档,重点在于梳理傅里叶变换到伽柏变换再到小波变换的前因后果,对于一些概念但求多而全,所以可能会有些理解的不准确,后续计划分别再展开学习研究.通过本文可以了解到: 1)傅里叶变换的缺点:2)Gabor变换的概念及优缺点:3)什么是小波:4)小波变换的概念及优点. 一.前言         首先,我必须说一下,在此之前,…
GNU scientific library 是一个强大的C,C++数学库.它涉及的面很广,并且代码效率高,接口丰富.正好最近做的一个项目中用到多元高斯分布,就找到了这个库. GNU scientific library下载地址:http://ftpmirror.gnu.org/gsl/ 相应说明文档下载地址: http://www.gnu.org/software/gsl/manual/gsl-ref.ps.gz 编译时需要加上一些后缀: g++ xxx.cpp -lgsl -lgslcbla…
摘自http://qianjigui.iteye.com/blog/847612 GSL(GNU Scientific Library)是一个 C 写成的用于科学计算的库,下面是一些相关的包 Desired=Unknown/Install/Remove/Purge/Hold | Status=Not/Inst/Cfg-files/Unpacked/Failed-cfg/Half-inst/trig-aWait/Trig-pend |/ Err?=(none)/Hold/Reinst-requir…
不论今天的计算机技术变化,新技术的出现,所有都是来自数据结构与算法基础.我们需要温故而知新.        算法.架构.策略.机器学习之间的关系.在过往和技术人员交流时,很多人对算法和架构之间的关系感到不可理解,算法是软的,架构是硬的,难道算法和架构还有什么关系不成?其实不然,算法和架构的关系非常紧密.在互联网时代,我们需要用算法处理的数据规模越来越大,要求的处理时间越来越短,单一计算机的处理能力是不可能满足需求的.而架构技术的发展,带来了很多不同特点的分布式计算平台.算法为了能够应用到这些分布…