tensorflow compile】的更多相关文章

bazel  build  --spawn_strategy=standalone tensorflow/examples/label_image/...…
Tensorflow is a very effective machine learning library implemented by C++, we can use tensorflow with Python, but, there is a problem if we don't compile the tensorflow, it would cost a lot of time to compute. when we install the tensorflow with pip…
#————————————————————————本文禁止转载,禁止用于各类讲座及ppt中,违者必究————————————————————————# 前几天看到一个有意思的分享,大意是讲如何用Tensorflow教神经网络自动创造音乐.听起来好好玩有木有!作为一个Coldplay死忠粉,第一想法就是自动生成一个类似Coldplay曲风的音乐,于是,开始跟着Github上的教程(项目的名称:Project Magenta)一步一步做,弄了三天,最后的生成的音乐在这里(如果有人能告诉我怎么在博客里…
这几天终于把tensorflow安装上了,中间遇到过不少的问题,这里记录下来.供大家想源码安装的参考. 安装环境:POWER8处理器,Docker容器Ubuntu14.04镜像. Build Bazel<v0.1.0> for IBM POWER8 CPU from Source Code My computer's os is ubuntu 14.04 , and I want to install bazel, There is only java7 available, so I cho…
原文链接:http://www.cnblogs.com/learn-to-rock/p/5677458.html 偶然在网上看到了一个让我很感兴趣的项目 Magenta,用Tensorflow让神经网络自动创造音乐. 白话就是:可以用一些音乐的风格来制作模型,然后用训练出的模型对新的音乐进行加工从而创造出新的音乐. 花了半天时间捣鼓终于有了成果,挺开心的,同时也把这半天的经验拿来分享,能让大家节约一些时间也算是我对社会做出的一点贡献吧. 再次感受 Google 的黑科技 希望大家能喜欢我的Chi…
这几天终于把tensorflow安装上了,中间遇到过不少的问题,这里记录下来.供大家想源码安装的参考. 安装环境:POWER8处理器,Docker容器Ubuntu14.04镜像. Build Protobuf<v3.0.0-alpha-3> for IBM POWER8 CPU from Source Code My computer's os is ubuntu 14.04 , and I want to install protobuf v3.0.0-alpha-3, but there…
上一篇装好了tensorflow的运行环境,开始尝试运行一些实例代码,在github上找到了一个tensorflow实现的facenet的代码,还是遇到了很多坑! 坚持看完,有重要总结! 代码:https://github.com/davidsandberg/facenet clone完毕后, 直接运行validate_on_lfw.py ,接下来就是一堆坑! 可能是新装的Ubuntu, 里面缺少太多东西了, 先装了多少东西基本不记得了, 起码还要安装好这两个: apt-get install…
Stephen Smith's Blog All things Sage 300… The Road to TensorFlow – Part 7: Finally Some Code leave a comment » Introduction Well after a long journey through Linux, Python, Python Libraries, the Stock Market, an Introduction to Neural Networks and tr…
0.安装依赖包 #用pip安装python科学计算库numpy,sklearn,scipysu - wget http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-8.noarch.rpm -.noarch.rpm yum install python-pip.noarch pip install --upgrade pip pip install numpy pip install sklearn pip install…
今天我们来解析下Tensorflow的Seq2Seq的demo.继上篇博客的PTM模型之后,Tensorflow官方也开放了名为translate的demo,这个demo对比之前的PTM要大了很多(首先,空间上就会需要大约20个G,另外差点把我的硬盘给运行死),但是也实用了很多.模型采用了encoder-decoder的框架结果,佐以attention机制来实现论文中的英语法语翻译功能.同时,模型的基础却来自之前的PTM模型.下面,让我们来一起来了解一下这个神奇的系统吧! 论文介绍及基础描写:…
上一期讨论了Tensorflow以及Gensim的Word2Vec模型的建设以及对比.这一期,我们来看一看Mikolov的另一个模型,即Paragraph Vector模型.目前,Mikolov以及Bengio的最新论文Ensemble of Generative and Discriminative Techniques for Sentiment Analysis of Movie Reviews里就引入了该模型作为用户对影视作品的评论分析方法.与此同时,网络上很多地方也指出该模型效果并没有…
Tensorflow让神经网络自动创造音乐 前几天看到一个有意思的分享,大意是讲如何用Tensorflow教神经网络自动创造音乐.听起来好好玩有木有!作为一个Coldplay死忠粉,第一想法就是自动生成一个类似Coldplay曲风的音乐,于是,开始跟着Github上的教程(项目的名称:Project Magenta)一步一步做,弄了三天,最后的生成的音乐在这里(如果有人能告诉我怎么在博客里插入音乐请赶快联系我!谢谢!) 第一首:Magenta Melody Result1.mp3 http://…
如果内容侵权的话,联系我,我会立马删了的-因为参考的太多了,如果一一联系再等回复,战线太长了--蟹蟹给我贡献技术源泉的作者们- 最近准备从理论和实验两个方面学习深度学习,所以,前面装好了Theano环境,后来知乎上看到这个回答,就调研了一下各个深度学习框架,我没有看源码,调研也不是很深入,仅仅是为了选择深度学习框架做的一个大概了解- 1. 如何选择深度学习框架? 参考资料如下: 1. https://github.com/zer0n/deepframeworks/blob/master/READ…
这段时间需要部署tensorflow到linux上,由于堡垒机不能连外网,所以pip.apt-get.wget.git统统不能用,然后就是各种调试了,下面整理了一些遇到的问题和解决方案,供大家参考(CentOS/Python3.4),有什么遗漏的问题还望大家补充. 1.Putty.XShell.SecureCRT.SSH Secure Shell Slient的优缺点 现在大多是用的xshell,因为xshell有一款个人免费的,还是中文界面,对于这种四级都是勉强过的,真心不错. putty因为…
本文主要是使用[监督学习]实现一个图像分类器,目的是识别图片是猫还是狗. 从[数据预处理]到 [图片预测]实现一个完整的流程, 当然这个分类在 Kaggle 上已经有人用[迁移学习](VGG,Resnet)做过了,迁移学习我就不说了,我自己用 Keras + Tensorflow 完整的实现了一遍. 准备工作: 数据集:Dogs vs. Cats注册激活困难,自己想想办法,Ps:实在注册不了百度云有下载自己搜搜 使用编程语言:当然是Python 3,你问我为什么,当然是人生苦短. 使用机器学习库…
源码地址 https://github.com/stephen-v/tensorflow_vgg_classify 1. VGG介绍 1.1. VGG模型结构 1.2. VGG19架构 2. 用Tensorflow搭建VGG19网络 3. 训练网络 参考文献 1. VGG介绍 1.1. VGG模型结构 VGG网络是牛津大学Visual Geometry Group团队研发搭建,该项目的主要目的是证明增加网络深度能够在一定程度上提高网络的精度.VGG有5种模型,A-E,其中的E模型VGG19是参加…
Ubuntu TensorFlow 源码 Android Demo的编译运行 一. 安装 Android 的SDK和NDK SDK 配置 A:下载 国内下载地址选最新的: SDK: https://developer.android.google.cn/studio/index.html 也可以下载一个旧的再update NDK: https://developer.android.google.cn/ndk/downloads/index.html B:解压 配置环境变量 sudo tar -…
catalogue . 引言 . 一些基本概念 . Sequential模型 . 泛型模型 . 常用层 . 卷积层 . 池化层 . 递归层Recurrent . 嵌入层 Embedding 1. 引言 Keras是一个高层神经网络库,Keras由纯Python编写而成并基Tensorflow或Theano 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) 支持CNN和RNN,或二者的结合 支持任意的链接方案(包括多输入和多输出训练) 无缝CPU和GPU切换 0x1: Kera…
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Overview 本文系“SkySeraph AI 实践到理论系列”第一篇,咱以AI界的HelloWord 经典MNIST数据集为基础,在Android平台,基于TensorFlow,实现CNN的手写数字识别.Code~ Practice Environmen…
迁移学习基本概念 迁移学习是这两年比较火的一个话题,主要原因是在当前的机器学习中,样本数据的获取是成本最高的一块.而迁移学习可以有效的把原有的学习经验(对于模型就是模型本身及其训练好的权重值)带入到新的领域,从而不需要过多的样本数据,也能达到大批量数据所达成的效果,进一步节省了学习的计算量和时间. MobileNet V2是由谷歌在2018年初发布的一个视觉模型,在Keras中已经内置的并使用ImageNet完成了训练,可以直接拿来就用,这个我们在本系列第五篇中已经提过了.MobileNet V…
<从锅炉工到AI专家(6)>一文中,我们把神经网络模型降维,简单的在二维空间中介绍了过拟合和欠拟合的现象和解决方法.但是因为条件所限,在该文中我们只介绍了理论,并没有实际观察现象和应对. 现在有了TensorFLow 2.0 / Keras的支持,可以非常容易的构建模型.我们可以方便的人工模拟过拟合的情形,实际来操作监控.调整模型,从而显著改善模型指标. 从图中识别过拟合和欠拟合 先借用上一篇的两组图: 先看上边的一组图,随着训练迭代次数的增加,预测的错误率迅速下降. 我们上一篇中讲,达到一定…
基本回归 回归(Regression):https://www.tensorflow.org/tutorials/keras/basic_regression 主要步骤:数据部分 获取数据(Get the data) 清洗数据(Clean the data) 划分训练集和测试集(Split the data into train and test) 检查数据(Inspect the data) 分离标签(Split features from labels) 规范化数据(Normalize th…
线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是一个连续的值. 实际上我们第一篇的房价预测就属于线性回归算法,如果把这个模型用于预测,结果是一个连续值而不是有限的分类. 从代码上讲,那个例子更多的是为了延续从TensorFlow 1.x而来的解题思路,我不想在这个系列的第一篇就给大家印象,TensorFlow 2.0成为了完全不同的另一个东西.在Tenso…
结构化数据的预处理 前面所展示的一些示例已经很让人兴奋.但从总体看,数据类型还是比较单一的,比如图片,比如文本. 这个单一并非指数据的类型单一,而是指数据组成的每一部分,在模型中对于结果预测的影响基本是一致的. 更通俗一点说,比如在手写数字识别的案例中,图片坐标(10,10)的点.(14,14)的点.(20,20)的点,对于最终的识别结果的影响,基本是同一个维度. 再比如在影评中,第10个单词.第20个单词.第30个单词,对于最终结果的影响,也在同一个维度. 是的,这里指的是数据在维度上的不同.…
Keras内置的预定义模型 上一节我们讲过了完整的保存模型及其训练完成的参数. Keras中使用这种方式,预置了多个著名的成熟神经网络模型.当然,这实际是Keras的功劳,并不适合算在TensorFlow 2.0头上. 当前TensorFlow 2.0-alpha版本捆绑的Keras中包含: densenet inception_resnet_v2 inception_v3 mobilenet mobilenet_v2 nasnet resnet50 vgg16 vgg19 xception 这…
Fashion Mnist --- 一个图片识别的延伸案例 在TensorFlow官方新的教程中,第一个例子使用了由MNIST延伸而来的新程序. 这个程序使用一组时尚单品的图片对模型进行训练,比如T恤(T-shirt).长裤(Trouser),训练完成后,对于给定图片,可以识别出单品的名称. 程序同样将所有图片规范为28x28点阵,使用灰度图,每个字节取值范围0-255.时尚单品的类型,同样也是分为10类,跟手写数字识别的分类维度相同.因此实际上,这个例子看起来美观也有趣很多,但是在技术层面上,…
数据集及预处理 从这个例子开始,相当比例的代码都来自于官方新版文档的示例.开始的几个还好,但随后的程序都将需要大量的算力支持.Google Colab是一个非常棒的云端实验室,提供含有TPU/GPU支持的Python执行环境(需要在Edit→Notebook Settings设置中打开).速度比不上配置优良的本地电脑,但至少超过平均的开发环境. 所以如果你的电脑运行速度不理想,建议你尝试去官方文档中,使用相应代码的对应链接进入Colab执行试一试. Colab还允许新建Python笔记,来尝试自…
图片样本可视化 原文第四篇中,我们介绍了官方的入门案例MNIST,功能是识别手写的数字0-9.这是一个非常基础的TensorFlow应用,地位相当于通常语言学习的"Hello World!". 我们先不进入TensorFlow 2.0中的MNIST代码讲解,因为TensorFlow 2.0在Keras的帮助下抽象度比较高,代码非常简单.但这也使得大量的工作被隐藏掉,反而让人难以真正理解来龙去脉.特别是其中所使用的样本数据也已经不同,而这对于学习者,是非常重要的部分.模型可以看论文.在网…
前言 只有光头才能变强. 文本已收录至我的GitHub仓库,欢迎Star:https://github.com/ZhongFuCheng3y/3y 最近在学习TensorFlow的相关知识,了解了TensorFlow一些基础的知识,现在周末有空了,就写写一些笔记,记录一下自己的成长~ 总的来说,TensorFlow还是一个比较新的技术,有兴趣的同学不妨跟着我的笔记,一起学学呗(反正没坏处)~ 前面回顾: 外行人都能看得懂的机器学习,错过了血亏! 这是我看过最好的「机器学习」科普文章了 神经网络浅…
影评文本分类 文本分类(Text classification):https://www.tensorflow.org/tutorials/keras/basic_text_classification主要步骤: 1.加载IMDB数据集 2.探索数据:了解数据格式.将整数转换为字词 3.准备数据 4.构建模型:隐藏单元.损失函数和优化器 5.创建验证集 6.训练模型 7.评估模型 8.可视化:创建准确率和损失随时间变化的图 IMDB数据集 包含来自互联网电影数据库的50000条影评文本 http…