投影矩阵广泛地应用在数学相关学科的各种证明中,但是由于其概念比较抽象,所以比较难理解.这篇文章主要从最小二乘法的推导导出投影矩阵,并且应用SVD分解,写出常用的几种投影矩阵的形式. 问题的提出 已知有一个这样的方程组: \[Ax=b\] 其中,\(A \in R^{m \times n},x,b \in R^n\) 当\(m=n\)时,且\(rank(A)=n\)时,这是一个适定方程组,有唯一解\(x=A^{-1}b\) 当\(m<n\)时,或者\(rank(A)<n\)时,这是一个欠定方程组…
世界变化真快,前段时间windows开发技术热还在如火如荼,web技术就开始来势汹汹,正当web呈现欣欣向荣之际,安卓小机器人,咬过一口的苹果,winPhone开发平台又如闪电般划破了混沌的web世界. 相信很多开发者都在疑问,为什么世界不是围着我转?而是我在围着世界转.我的答案是,少林寺的和尚学打架,首先要学会站桩.要练功,先占三年桩.少林寺的和尚打架从来不围着别人转,而是别人围着他转. 世界的原理都是相通的,开发者一样,要做到脚下生根. 最近几天在看OpenGL的投影矩阵,自己也实现了一个投…
我们如今准备好在代码中加入透视投影了. Android的Matrix类为它准备了两个方法------frustumM()和perspectiveM(). 不幸的是.frustumM()的个缺陷,它会影响某些类型的投影,而perspectiveM()仅仅是从Android的ICS版本号開始才被引入,在早期的Android版本号里并没有这种方法.我们能够简单地支持ICS及其以上的版本号.可是这样会丢掉非常大一部分市场.一些用户依旧执行早期的Android版本号. 作为替代,我们能够创建我们自己的方法…
<!--探讨WEBGL中不同图形的绘制方法:[待测试2017.11.6]--> <!DOCTYPE HTML> <html lang="en"> <head> <title>WEBGL高级编程----绘制三维场景(变换矩阵)</title> <meta charset="utf-8"> <!--顶点着色器--> <script id="shader-vs&…
(翻译,图片也来自原文) 一.概述 绝大部分计算机的显示器是二维的(a 2D surface).在OpenGL中一个3D场景需要被投影到屏幕上成为一个2D图像(image).这称为投影变换(参见这或这),需要用到投影矩阵(projection matrix). 首先,投影矩阵会把所有顶点坐标从eye coordinates(观察空间,eye space或view space)变换到裁剪坐标(clip coordinated,属于裁剪空间,clip space).然后,这些裁剪坐标被变换到标准化设…
概述 透视投影 正交投影 概述 计算机显示器是一个2D平面.OpenGL渲染的3D场景必须以2D图像方式投影到计算机屏幕上.GL_PROJECTION矩阵用于该投影变换.首先,它将所有定点数据从观察坐标转换到裁减坐标.接着,这些裁减坐标通过除以w分量的方式转换到归一化设备坐标(NDC). 因此,我们需要记住一点:裁减变换(视锥剔除)与NDC变换都保存在GL_PROJECTION矩阵中.下述章节描述如何从6个限定参数(左.右.下.上.近平面.远平面)构建投影矩阵. 注意,视锥剔除(裁减)在裁减坐标…
转自:http://blog.csdn.net/gggg_ggg/article/details/45969499 本文乃<投影矩阵的推导>译文,原文地址为: http://www.codeguru.com/cpp/misc/misc/math/article.php/c10123__1/Deriving-Projection-Matrices.htm,由于本人能力有限,有译的不明白的地方大家可以参考原文,谢谢^-^! 在3D图形程序的基本矩阵变换中,投影矩阵是其中比较复杂的.平移和缩放浏览一…
OpenGL无意间同时看到两种创建投影矩阵的写法,可以说它们完成的是同样的功能,但写法完全不同,可以观摩一下什么叫做异曲同工之妙... 第一种: gltMakeShadowMatrix函数是重点 // Gets the three coefficients of a plane equation given three points on the plane. void gltGetPlaneEquation(GLTVector3 vPoint1, GLTVector3 vPoint2, GLT…